Skip to main content
Log in

Overexpressed C-type natriuretic peptide serves as an early compensatory response to counteract extracellular matrix remodeling in unilateral ureteral obstruction rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Although the mechanism underlying C-type natriuretic peptide (CNP) beneficial effects is not entirely understood, modulating the expression of matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) may play an important role. The study presented herein was designed as a first demonstration of the regulative effects of CNP on MMPs/TIMPs expression in unilateral ureteral obstruction (UUO) rats. The continuous changes of CNP, MMP-2, MMP-9, TIMP-1, TIMP-2 and type IV collagen (Col-IV) expression were determined in the obstructed rat kidneys at 3 days, 1, 2, and 3 months post-UUO respectively. According to the real-time PCR analysis, CNP, MMP-2 and MMP-9 mRNA expression in the obstructed kidneys were significantly higher compared to every time corresponding SOR, and progressively decreased over time. In contrast, in the obstructed kidneys collected 2 and 3 months post-UUO, the higher TIMP-1 and TIMP-2 mRNA expression were observed in comparison to the corresponding SOR group. The above trends of CNP, MMP-2, MMP-9, TIMP-1, and TIMP-2 transcripts were confirmed by their protein expression based on immunohistochemistry and western blot, and finally contributed to the progressive elevated Col-IV expression in the obstructed kidneys throughout the entire study period. Overexpressed CNP may be an early compensatory response to counteract extracellular matrix remodeling in UUO rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17:17–25

    Article  PubMed  CAS  Google Scholar 

  2. Hewitson TD (2009) Renal tubulointerstitial fibrosis: common but never simple. Am J Physiol Renal Physiol 296:F1239–F1244

    Article  PubMed  CAS  Google Scholar 

  3. De Heer E, Sijpkens YW, Verkade M, den Dulk M, Langers A, Schutrups J, Bruijn JA, van Es LA (2000) Morphometry of interstitial fibrosis. Nephrol Dial Transplant 15:72–73

    Article  PubMed  Google Scholar 

  4. Catania JM, Chen G, Parrish AR (2007) Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292:F905–F911

    Article  PubMed  CAS  Google Scholar 

  5. Duymelinck C, Dauwe SE, De Greef KE, Ysebaert DK, Verpooten GA, De Broe ME (2000) TIMP-1 gene expression and PAI-1 antigen after unilateral ureteral obstruction in the adult male rat. Kidney Int 58:1186–1201

    Article  PubMed  CAS  Google Scholar 

  6. Cheng S, Pollock AS, Mahimkar R, Olson JL, Lovett DH (2006) Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. FASEB J 20:1898–1900

    Article  PubMed  CAS  Google Scholar 

  7. Baxter GF (2004) The natriuretic peptides. Basic Res Cardiol 99:71–75

    Article  PubMed  CAS  Google Scholar 

  8. Cataliotti A, Giordano M, De Pascale E, Giordano G, Castellino P, Jougasaki M, Costello LC, Boerrigter G, Tsuruda T, Belluardo P, Lee SC, Huntley B, Sandberg S, Malatino LS, Burnett JC Jr (2002) CNP production in the kidney and effects of protein intake restriction in nephrotic syndrome. Am J Physiol Renal Physiol 283:F464–F472

    PubMed  CAS  Google Scholar 

  9. Dean AD, Vehaskari VM, Greenwald JE (1994) Synthesis and localization of C-type natriuretic peptide in mammalian kidney. Am J Physiol 266:F491–F496

    PubMed  CAS  Google Scholar 

  10. Mattingly MT, Brandt RR, Heublein DM, Wei CM, Nir A, Burnett JC Jr (1994) Presence of C-type natriuretic peptide in human kidney and urine. Kidney Int 46:744–747

    Article  PubMed  CAS  Google Scholar 

  11. Sangaralingham SJ, Heublein DM, Grande JP, Cataliotti A, Rule AD, McKie PM, Martin FL, Burnett JC Jr (2011) Urinary C-type natriuretic peptide excretion: a potential novel biomarker for renal fibrosis during aging. Am J Physiol Renal Physiol 301:F943–F952

    Article  PubMed  CAS  Google Scholar 

  12. Hu P, Lu L, Hu B, Qin YH (2010) Renal action of C-type natriuretic peptide: advocating the isolated perfused rat kidney model. Saudi J Kidney Dis Transpl 21:613–620

    PubMed  Google Scholar 

  13. Ahluwalia A, MacAllister RJ, Hobbs AJ (2004) Vascular actions of natriuretic peptides. Cyclic GMP-dependent and -independent mechanisms. Basic Res Cardiol 99:83–89

    Article  PubMed  CAS  Google Scholar 

  14. Del Ry S, Giannessi D, Maltinti M, Prontera C, Iervasi A, Colotti C, Emdin M, L’Abbate A, Neglia D (2007) Increased levels of C-type natriuretic peptide in patients with idiopathic left ventricular dysfunction. Peptides 28:1068–1073

    Article  PubMed  Google Scholar 

  15. Palmer SC, Prickett TC, Espiner EA, Yandle TG, Richards AM (2009) Regional release and clearance of C-type natriuretic peptides in the human circulation and relation to cardiac function. Hypertension 54:612–618

    Article  PubMed  CAS  Google Scholar 

  16. Sangaralingham SJ, Huntley BK, Martin FL, McKie PM, Bellavia D, Ichiki T, Harders GE, Chen HH, Burnett JC Jr (2011) The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide. Hypertension 57:201–207

    Article  PubMed  CAS  Google Scholar 

  17. Canaan-Kühl S, Ostendorf T, Zander K, Koch KM, Floege J (1998) C-type natriuretic peptide inhibits mesangial cell proliferation and matrix accumulation in vivo. Kidney Int 53:1143–1151

    Article  PubMed  Google Scholar 

  18. Segawa K, Minami K, Jimi N, Nakashima Y, Shigematsu A (1998) C-type natriuretic peptide inhibits rat mesangial cell proliferation by a phosphorylation-dependent mechanism. Naunyn Schmiedebergs Arch Pharmacol 357:70–76

    Article  PubMed  CAS  Google Scholar 

  19. Park HC, Yasuda K, Ratliff B, Stoessel A, Sharkovska Y, Yamamoto I, Jasmin JF, Bachmann S, Lisanti MP, Chander P, Goligorsky MS (2010) Postobstructive regeneration of kidney is derailed when surge in renal stem cells during course of unilateral ureteral obstruction is halted. Am J Physiol Renal Physiol 298:F357–F364

    Article  PubMed  CAS  Google Scholar 

  20. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  21. Oldroyd SD, Thomas GL, Gabbiani G, El Nahas AM (1999) Interferon-gamma inhibits experimental renal fibrosis. Kidney Int 56:2116–2127

    Article  PubMed  CAS  Google Scholar 

  22. Vaillancourt P, Omer S, Palfree R, Varma DR, Mulay S (1997) Downregulation of adrenal atrial natriuretic peptide receptor mRNAs and proteins by pregnancy in rats. J Endocrinol 155:523–530

    Article  PubMed  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  24. Zhou TB, Qin YH, Li ZY, Xu HL, Zhao YJ, Lei FY (2012) All-trans retinoic acid treatment is associated with prohibitin expression in renal interstitial fibrosis rats. Int J Mol Sci 13:2769–2782

    Article  PubMed  CAS  Google Scholar 

  25. Buerkert J, Martin D, Head M, Prasad J, Klahr S (1978) Deep nephron function after release of acute unilateral ureteral obstruction in the young rat. J Clin Invest 62:1228–1239

    Article  PubMed  CAS  Google Scholar 

  26. Chevalier RL, Thornhill BA, Chang AY (2000) Unilateral ureteral obstruction in neonatal rats leads to renal insufficiency in adulthood. Kidney Int 58:1987–1995

    Article  PubMed  CAS  Google Scholar 

  27. Nangaku M (2004) Mechanisms of tubulointerstitial injury in the kidney: final common pathways to end-stage renal failure. Intern Med 43:9–17

    Article  PubMed  CAS  Google Scholar 

  28. Ardissino G, Testa S, Daccò V, Viganò S, Taioli E, Claris-Appiani A, Procaccio M, Avolio L, Ciofani A, Dello Strologo L, Montini G, Ital Kid Project (2004) Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy. Data from the Ital Kid Project. Pediatr Nephrol 19:172–177

    Article  PubMed  Google Scholar 

  29. Hu P, Lu L, Hu B, Du PF (2009) Characteristics of lipid metabolism under different urinary protein excretion in children with primary nephrotic syndrome. Scand J Clin Lab Invest 69:680–686

    Article  PubMed  CAS  Google Scholar 

  30. Nangaku M, Eckardt KU (2007) Hypoxia and the HIF system in kidney disease. J Mol Med 85:1325–1330

    Article  PubMed  Google Scholar 

  31. Nangaku M, Inagi R, Miyata T, Fujita T (2007) Angiotensin-induced hypoxia in the kidney: functional and structural changes of the renal circulation. Adv Exp Med Biol 618:85–99

    Article  PubMed  Google Scholar 

  32. Mimura I, Nangaku M (2010) The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease. Nat Rev Nephrol 6:667–678

    Article  PubMed  CAS  Google Scholar 

  33. De Laplanche E, Gouget K, Cléris G, Dragounoff F, Demont J, Morales A, Bezin L, Godinot C, Perrière G, Mouchiroud D, Simonnet H (2006) Physiological oxygenation status is required for fully differentiated phenotype in kidney cortex proximal tubules. Am J Physiol Renal Physiol 291:F750–F760

    Article  PubMed  Google Scholar 

  34. Erkan E, Devarajan P, Schwartz GJ (2007) Mitochondria are the major targets in albumin-induced apoptosis in proximal tubule cells. J Am Soc Nephrol 18:1199–1208

    Article  PubMed  CAS  Google Scholar 

  35. Tanaka T, Hanafusa N, Ingelfinger JR, Ohse T, Fujita T, Nangaku M (2003) Hypoxia induces apoptosis in SV40-immortalized rat proximal tubular cells through the mitochondrial pathways, devoid of HIF1-mediated upregulation of Bax. Biochem Biophys Res Commun 309:222–231

    Article  PubMed  CAS  Google Scholar 

  36. Chevalier RL, Kim A, Thornhill BA, Wolstenholme JT (1999) Recovery following relief of unilateral ureteral obstruction in the neonatal rat. Kidney Int 55:793–807

    Article  PubMed  CAS  Google Scholar 

  37. Jones CL (1996) Matrix degradation in renal disease. Nephrology (Carlton) 2:13–23

    Article  Google Scholar 

  38. Lelongt B, Trugnan G, Murphy G, Ronco PM (1997) Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J Cell Biol 136:1363–1373

    Article  PubMed  CAS  Google Scholar 

  39. Li MX, Liu BC (2007) Epithelial to mesenchymal transition in the progression of tubulointerstitial fibrosis. Chin Med J (Engl) 120:1925–1930

    CAS  Google Scholar 

  40. Toth M, Chvyrkova I, Bernardo MM, Hernandez-Barrantes S, Fridman R (2003) Pro-MMP-9 activation by the MT1-MMP/MMP-2 axis and MMP-3: role of TIMP-2 and plasma membranes. Biochem Biophys Res Commun 308:386–395

    Article  PubMed  CAS  Google Scholar 

  41. Alcaraz LA, Banci L, Bertini I, Cantini F, Donaire A, Gonnelli L (2007) Matrix metalloproteinase–inhibitor interaction: the solution structure of the catalytic domain of human matrix metalloproteinase-3 with different inhibitors. J Biol Inorg Chem 12:1197–1206

    Article  PubMed  CAS  Google Scholar 

  42. Hu P, Qin YH, Pei J, Lei FY, Hu B, Lu L (2010) Beneficial effect of all-trans retinoic acid (ATRA) on glomerulosclerosis rats via the down-regulation of the expression of alpha-smooth muscle actin: a comparative study between ATRA and benazepril. Exp Mol Pathol 89:51–57

    Article  PubMed  CAS  Google Scholar 

  43. Qin YH, Lei FY, Hu P, Pei J, Feng ZB, Pang YS (2009) Effect of all-trans retinoic acid on renal expressions of matrix metalloproteinase-2, matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rats with glomerulosclerosis. Pediatr Nephrol 24:1477–1486

    Article  PubMed  Google Scholar 

  44. Qin YH, Zhou TB, Lei FY, Huang WF, Zhao YJ, Lin FQ, Su LN (2011) Cut-off values for serum matrix metalloproteinase-9: is there a threshold to predict renal involvement for Henoch-Schonlein purpura in children? Nephrology (Carlton) 16:93–99

    Article  CAS  Google Scholar 

  45. Hussein Ahmed AK (2009) Matrix metalloproteinases and their inhibitors in kidney scarring: culprits or innocents. J Health Sci 55:473–483

    Article  Google Scholar 

  46. Johnson TS, Haylor JL, Thomas GL, Fisher M, El Nahas AM (2002) Matrix metalloproteinases and their inhibitions in experimental renal scarring. Exp Nephrol 10:182–195

    Article  PubMed  CAS  Google Scholar 

  47. Kim H, Oda T, Lopez-Guisa J, Wing D, Edwards DR, Soloway PD, Eddy AA (2001) TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 12:736–748

    PubMed  CAS  Google Scholar 

  48. Igaki T, Itoh H, Suga S, Hama N, Ogawa Y, Komatsu Y, Mukoyama M, Sugawara A, Yoshimasa T, Tanaka I, Nakao K (1996) C-type natriuretic peptide in chronic renal failure and its action in humans. Kidney Int Suppl 55:S144–S147

    PubMed  CAS  Google Scholar 

  49. Das S, Au E, Krazit ST, Pandey KN (2010) Targeted disruption of guanylyl cyclase-A/natriuretic peptide receptor-A gene provokes renal fibrosis and remodeling in null mutant mice: role of proinflammatory cytokines. Endocrinology 151:5841–5850

    Article  PubMed  CAS  Google Scholar 

  50. Hu P, Wang J, Hu B, Lu L, Xuan Q, Qin YH (2012) Increased urinary C-type natriuretic peptide excretion may be an early marker of renal tubulointerstitial fibrosis. Peptides 37:98–105

    Google Scholar 

  51. Doi K, Ikeda T, Itoh H, Ueyama K, Hosoda K, Ogawa Y, Yamashita J, Chun TH, Inoue M, Masatsugu K, Sawada N, Fukunaga Y, Saito T, Sone M, Yamahara K, Kook H, Komeda M, Ueda M, Nakao K (2001) C-type natriuretic peptide induces redifferentiation of vascular smooth muscle cells with accelerated reendothelialization. Arterioscler Thromb Vasc Biol 21:930–936

    Article  PubMed  CAS  Google Scholar 

  52. Woodard GE, Rosado JA, Brown J (2002) Expression and control of C-type natriuretic peptide in rat vascular smooth muscle cells. Am J Physiol Regul Integr Comp Physiol 282:R156–R165

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81000306) and the Post-Doctoral Foundation of Anhui Medical University (No. 2009KJ02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, P., Wang, J., Zhao, X.Q. et al. Overexpressed C-type natriuretic peptide serves as an early compensatory response to counteract extracellular matrix remodeling in unilateral ureteral obstruction rats. Mol Biol Rep 40, 1429–1441 (2013). https://doi.org/10.1007/s11033-012-2186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2186-7

Keywords

Navigation