Skip to main content

Advertisement

Log in

Cloning, identification and expression analysis of ACC oxidase gene involved in ethylene production pathway

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

1-aminocyclopropane-1-carboxylic acid oxidase (ACO) enzyme is a member of the Fe II-dependent family of oxidases/oxygenases which require Fe2+ as a cofactor, ascorbate as a cosubstrate and CO2 as an activator. This enzyme catalyses the terminal step in the plant signaling of ethylene biosynthetic pathway. A 948 bp fragment of the ACO1 gene cDNA sequence was cloned from tomato (Lycopersicon esculentum) fruit tissues by using reverse transcriptase-polymerase chain reaction (RT-PCR) with two PCR primers designed according to the sequence of a tomato cDNA clone (X58273). The BLAST search showed a high level of similarity (77–98 %) between ACO1 and ACO genes of other plants. The calculated molecular mass and predicted isoelectric point of LeACO1 were 35.8 kDa and 5.13, respectively. The three-dimensional structure studies illustrated that the LeACO1 protein folds into a compact jelly-roll motif comprised of 8 α-helices, 12 β-strands and several long loops. The cosubstrate was located in a cofactor-binding pocket referred to as a 2-His-1-carboxylate facial triad. Semi-quantitative RT-PCR analysis of gene expression revealed that the LeACO1 was expressed in fruit tissues at different ripening stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

ACO:

ACC oxidase

ACS:

ACC synthase

SAM:

S-adenosylmethionine

ORF:

Open reading frame

RT-PCR:

Reverse transcription polymerase chain reaction

Bp:

Base pair

References

  1. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol 16:1–18

    Article  PubMed  CAS  Google Scholar 

  2. Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of ACC as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76:170–174

    Article  PubMed  CAS  Google Scholar 

  3. Prescott AG (1993) A dilemma of dioxygenases (or where biochemistry and molecular biology fail to meet). J Exp Bot 44:849–861

    Article  CAS  Google Scholar 

  4. Ryle MJ, Hausinger RP (2002) Non-heme iron oxygenases. Curr Opin Chem Biol 6(2):193–201

    Article  PubMed  CAS  Google Scholar 

  5. Zhang ZH, Ren JS, Clifton LJ, Schofield CJ (2004) Crystal structure and mechanistic implications of 1-aminocyclopropane-1-carboxylic acid oxidase the ethylene-forming enzyme. Chem Biol 11:1383–1394

    Article  PubMed  CAS  Google Scholar 

  6. Tang X, Wang H, Brandt AS, Woodson WR (1993) Organization and structure of the 1-aminocyclopropane-1-carboxylate oxidase gene family from Petunia hybrida. Plant Mol Biol 23:1151–1164

    Article  PubMed  CAS  Google Scholar 

  7. Chen CM, McManus MT (2006) Expression of 1-aminocyclopropane-1-carboxylate (ACC) oxidase genes during the development of vegetative tissues in white clover (Trifolium repens L.) is regulated by ontological cues. Plant Mol Biol 60:451–467

    Article  PubMed  Google Scholar 

  8. Trainotti L, Pavanello A, Casadoro G (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot 56:2037–2046

    Article  PubMed  CAS  Google Scholar 

  9. Ruperti B, Bonghi C, Rasori A, Ramina A, Tonutti P (2001) Characterization and expression of two members of the peach 1-aminocyclopropane-1-carboxylate oxidase gene family. Physiol Plant 111:336–344

    Article  PubMed  CAS  Google Scholar 

  10. Lasserre E, Bouquin T, Hernandez JA, Bull J, Pech JC, Balague C (1996) Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melon L.). Mol Gen Genet 251:81–90

    PubMed  CAS  Google Scholar 

  11. Fernandez-Otero C, Matilla AJ, Rasori A, Ramina A, Bonghi C (2006) Regulation of ethylene biosynthesis in reproductive organs of damson plum (Prunus domestica L. subsp. Syriaca). Plant Sci 171:74–83

    Article  CAS  Google Scholar 

  12. Binnie JE, McManus MT (2009) Characterization of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase multigene family of Malus domestica Borkh. Phytochem 70:348–360

    Article  CAS  Google Scholar 

  13. Clendennen SK, Kipp PB, May GD (1997) The role of ethylene in banana fruit ripening. In: Kanellis AK, Chang C, Kende H, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene. Kluwer, Dordrecht, pp 141–148

    Chapter  Google Scholar 

  14. McGarvey DJ, Christofferson RE (1990) Nucleotide sequence of a ripening related cDNA from avocado fruit. Plant Mol Biol 15:165–167

    Article  PubMed  CAS  Google Scholar 

  15. Knoester M, Bol JF, van Loon LC, Linthorst HJ (1995) Virus-induced gene expression for enzymes of ethylene biosynthesis in hypersensitively reacting tobacco. Mol Plant-Microbe Interact 8:177–180

    Article  PubMed  CAS  Google Scholar 

  16. Nie X, Singh RP, Tai GC (2002) Molecular characterization and expression analysis of 1-aminocyclopropane-1-carboxylate oxidase homologs from potato under abiotic and biotic stresses. Genome 45:905–913

    Article  PubMed  CAS  Google Scholar 

  17. Barry CS, Blume B, Bouzayen M, Cooper W, Hamilton AJ, Grierson D (1996) Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9:525–535

    Article  PubMed  CAS  Google Scholar 

  18. Alexander L, Lin Z, Chen G, Kim S, Hackett R, Wilson I, Grierson D (2002) Ethylene signalling in ripening tomato fruit. Comp Biochem Physiol A 132:S97

    Google Scholar 

  19. Huang LC, Lai UL, Yang SF, Chu CK, Tsai MF, Sun CW (2007) Delayed flower senescence of Petunia hybrida plants transformed with antisense broccoli ACC synthase and ACC oxidase genes. Postharvest Biol and Technol 46:47–53

    Article  CAS  Google Scholar 

  20. Liu Y, Hoffman NE, Yang SF (1985) Promotion by ethylene of the capability to convert 1-aminocyclopropane-1-carboxylic acid to ethylene in preclimacteric tomato and cantaloupe fruits. Plant Physiol 77:407–411

    Article  PubMed  CAS  Google Scholar 

  21. DellaPenna D, Lincoln JE, Fischer RL, Bennett AB (1989) Transcriptional analysis of polygalacturonase and other ripening associated genes in Rutgers, rin, nor, and Nr tomato fruit. Plant Physiol 90:1372–1377

    Article  PubMed  CAS  Google Scholar 

  22. Gaffe J, Mishra KK, Tiznado ME, Handa AK (1997) Functional expression of a ubiquitously expressed tomato pectin methylesterase gene in transgenic tobacco plants. Plant Physiol 114:1311–1312

    Article  Google Scholar 

  23. Smith DL, Gross KC (2000) A family of at least seven betagalactosidase genes is expressed during tomato fruit development. Plant Physiol 123:1173–1183

    Article  PubMed  CAS  Google Scholar 

  24. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  PubMed  CAS  Google Scholar 

  25. Iki K, Sekigushi K, Kurata K, Tada T, Nakagawa H, Ogura N, Takehana H (1978) Immunological properties of β-fructofuranosidase from ripening tomato fruit. Phytochemistry 17:311–312

    Article  CAS  Google Scholar 

  26. Jeffery D, Smith C, Goodenough P, Prosser I, Grierson D (1984) Ethylene-independent and ethylene-dependent biochemical changes in ripening tomatoes. Plant Physiol 74:32–38

    Article  PubMed  CAS  Google Scholar 

  27. Sitrit Y, Bennett AB (1998) Regulation of tomato fruit polygalacturonase mRNA accumulation by ethylene: a re-examination. Plant Physiol 116:1145–1150

    Article  PubMed  CAS  Google Scholar 

  28. Wei j, Ma F, Shi SH, Qi X, Zhu X, Yuan J (2010) Changes and postharvest regulation of activity and gene expression of enzymes related to cell wall degradation in ripening apple fruit. Postharvest Biol and Technol 56:147–154

    Article  CAS  Google Scholar 

  29. Atkinson RG, Gunaseelan K, Wang MY, Luo L, Wang T, Norling C, Johnston S, Maddumage R, Schröder R, Schaffer R (2011) Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. J Exp Bot 62(11):3821–3835

    Article  PubMed  CAS  Google Scholar 

  30. Stepanova A, Alonso J (2005) Ethylene signaling and response pathway: a unique signaling cascade with a multitude of inputs and outputs. Physiol Plant 123:195–206

    Article  CAS  Google Scholar 

  31. Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27–37

    Article  PubMed  Google Scholar 

  32. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  33. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) In: Walker JM (ed) Protein identification and analysis tools on the ExPASy server-the proteomics protocols handbook. Humana Press, Totowa

    Google Scholar 

  34. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N (2010) ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucl Aci Res 38:529–533

    Article  Google Scholar 

  35. Geourjon C, Deleage G (1995) SOPMA: significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. CABiOS 11:681–684

    PubMed  CAS  Google Scholar 

  36. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinf. 9:40. doi:10.1186/1471-2105-9-40

  37. Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  38. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 11:4673–4680

    Article  Google Scholar 

  39. Kadyrzhanova DK, McCully TJ, Jaworski SA, Ververidis P, Vlachonasios KE, Murakami KG, Dilley DR (1997) Structure function analysis of ACC oxidase by site-directed mutagenesis. In: Kanellis AK, Chang C, Kende H, Grierson D (eds) Biology and biotechnology of the plant hormone ethylene. Kluwer, The Netherlands, pp 5–13

    Chapter  Google Scholar 

  40. McGarvey DJ, Christoffersen RE (1992) Characterization and kinetic parameters of ethylene-forming enzyme from avocado fruit. J Biol Chem 267:5964–5967

    PubMed  CAS  Google Scholar 

  41. Seo YS, Yoo A, Jung J, Sung SK, Yang DR, Kim WT, Lee W (2004) The active site and substrate-binding mode of 1-aminocyclopropane-1-carboxylate oxidase determined by site-directed mutagenesis and comparative modelling studies. Biochem J 380:339–346

    Article  PubMed  CAS  Google Scholar 

  42. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee SK, Lehnert N, Neese F, Skulan AJ, Yang YS, Zhou J (2000) Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 100:273–278

    Article  Google Scholar 

  43. Elkins JM, Ryle MJ, Clifton IJ, Dunning Hotopp JC, Lloyd JS, Burzlaff NI, Baldwin JE, Hausinger RP, Roach PR (2002) X-ray crystal structure of Escherichia coli taurine/_-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry 41:5185–5192

    Article  PubMed  CAS  Google Scholar 

  44. Roach PL, Clifton IJ, Fulop V, Harlos K, Barton GJ, Hajdu J, Andersson I, Schofield CJ, Baldwin JE (1995) Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 375:700–704

    Article  PubMed  CAS  Google Scholar 

  45. Zhang ZH, Ren JS, Stammers DK, Baldwin JE, Harlos Schofield CJ (2000) Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nat Struct Biol 7:127–133

    Article  PubMed  CAS  Google Scholar 

  46. Wilmouth RC, Turnbull JJ, Welford RWD, Clifton IJ, Prescott AG, Schofield CJ (2002) Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10:93–103

    Article  PubMed  CAS  Google Scholar 

  47. Lay VJ, Prescott AG, Thomas PG, John P (1996) Heterologous expression and site-directed mutagenesis of the 1-aminocyclopropane-1-carboxylate oxidase from kiwi fruit. Eur J Biochem 242:228–234

    Article  PubMed  CAS  Google Scholar 

  48. Anjanasree KN, Bansal KC (2005) Differential expression of tomato ACC oxidase gene family in relation to fruit ripening. Curr Sci 89:1394–1398

    CAS  Google Scholar 

  49. Lelievre JM, Tichit L, Fillion L, Larrigaudiere C, Vendrell M, Pech JC (1995) Cold-induced accumulation of 1-aminocyclopropane-1-carboxylate oxidase protein in Granny Smith apples. Postharv Biol Technol 5:11–17

    Article  CAS  Google Scholar 

  50. Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986

    Article  PubMed  CAS  Google Scholar 

  51. Van-der-Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

    Article  PubMed  Google Scholar 

  52. Calvo G (2004) Efecto del 1-metilciclopropeno (1-MCP) en peras cv Williams cosechadas en dos estados de madurez. Rev Invest Agropecu 33:3–26

    Google Scholar 

  53. Chae HS, Cho YG, Park MY, Lee MC, Eun MY, Kang BG, Kim WT (2000) Hormonal cross-talk between auxin and ethylene differentially regulates the expression of two members of the 1-aminocyclopropane-1-carboxylate oxidase gene family in rice (Oryza sativa L.). Plant Cell Physiol 41:354–362

    Article  PubMed  CAS  Google Scholar 

  54. English PJ, Lycett GW, Roberts JA, Jackson MB (1995) Increased 1-aminocyclopropane-1-carboxylic acid oxidase activity in shoots of flooded tomato plants raises ethylene production to physiologically active levels. Plant Physiol 109:1435–1440

    PubMed  CAS  Google Scholar 

  55. Kim JH (2006) Ethylene-regulated expression of ACC oxidase and ACC synthase genes in mung bean hypocotyls. J Plant Biol 49:291–297

    Article  CAS  Google Scholar 

  56. Llop-Tous I, Barry CS, Grierson D (2000) Regulation of ethylene biosynthesis in response to pollination in tomato flowers. Plant Physiol 123:971–978

    Article  PubMed  CAS  Google Scholar 

  57. Owino WO, Manabe Y, Mathooko FM, Kubo Y, Inaba A (2006) Regulatory mechanisms of ethylene biosynthesis in response to various stimuli during maturation and ripening in fig fruit (Ficus carica L.). Plant Physiol Biochem 44:335–342

    Article  PubMed  CAS  Google Scholar 

  58. Tassoni A, Watkins CB, Davies PJ (2006) Inhibition of the ethylene response by 1-MCP in tomato suggests that polyamines are not involved in delaying ripening, but may moderate the rate of ripening or over-ripening. J Exp Bot 57:3313–3325

    Article  PubMed  CAS  Google Scholar 

  59. Woltering EJ, Balk PA, Nijenhuis-deVries MA, Faivre M, Ruys G, Somhorst D, Philosoph-Hadas S, Friedman H (2005) An auxinresponsive 1-aminocyclopropane-1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems. Planta 220:403–413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheem Haddad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari, Z., Haddad, R., Hosseini, R. et al. Cloning, identification and expression analysis of ACC oxidase gene involved in ethylene production pathway. Mol Biol Rep 40, 1341–1350 (2013). https://doi.org/10.1007/s11033-012-2178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2178-7

Keywords

Navigation