Skip to main content

Advertisement

Log in

Comparative transcriptome analysis of tobacco (Nicotiana tabacum) leaves to identify aroma compound-related genes expressed in different cultivated regions

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To identify genes that are differentially expressed in tobacco in response to environmental changes and to decipher the mechanisms by which aromatic carotenoids are formed in tobacco, an Agilent Tobacco Gene Expression microarray was adapted for transcriptome comparison of tobacco leaves derived from three cultivated regions of China, Kaiyang (KY), Weining (WN) and Tianzhu (TZ). A total of 1,005 genes were differentially expressed between leaves derived from KY and TZ, 733 between KY and WN, and 517 between TZ and WN. Genes that were upregulated in leaves from WN and TZ tended to be involved in secondary metabolism pathways, and included several carotenoid pathway genes, e.g., NtPYS, NtPDS, and NtLCYE, whereas those that were down-regulated tended to be involved in the response to temperature and light. The expression of 10 differentially expressed genes (DEGs) was evaluated by real-time quantitative polymerase chain reaction (qRT-PCR) and found to be consistent with the microarray data. Gene Ontology and MapMan analyses indicate that the genes that were differentially expressed among the three cultivated regions were associated with the light reaction of photosystem II, response to stimuli, and secondary metabolism. High-performance liquid chromatography (HPLC) analysis showed that leaves derived from KY had the lowest levels of lutein, β-carotene, and neoxanthin, whereas the total carotenoid content in leaves from TZ was greatest, a finding that could well be explained by the expression patterns of DEGs in the carotenoid pathway. These results may help elucidate the molecular mechanisms underlying environmental adaptation and accumulation of aroma compounds in tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a.s.l.:

Above sea level

DEG:

Differentially expressed gene

References

  1. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  Google Scholar 

  2. Wang Y, Frei M (2011) Stressed food-The impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ 141:271–286

    Article  Google Scholar 

  3. Wahlberg I (2002) Carotenoid-derived aroma compounds in tobacco. In: Winterhalter P, Rouseff RL (eds) Carotenoid-derived aroma compounds, vol 802. American Chemical Society, Washington, pp 131–144

    Chapter  Google Scholar 

  4. Liu P, Wang X, Wang J, Yan Q, Shi G, Yang T (2010) Changes of aroma constituents of different flue-cured tobacco genotypes in different ecoregions. Acta Agric Zhejiangensis 22:239–242 (in Chinese with English Abstract)

    Google Scholar 

  5. Shi JL, Yang HQ, Song CM, Deng JH, Pang T (2011) Comparison on the main volatile aroma components of flue-cured tobacco from different ecological regions in Yunnan Province. J Yunnan Agric Univ 26:790–795 (in Chinese with English Abstract)

    CAS  Google Scholar 

  6. Wang N, Li Z, Wang D, Xu Z, Zhou H, Zhu X (2009) Preliminary study on principal aroma and flavor constituents of flue-cured tobacco in China. Chin Tobacco Sci 30(3):1–6 (in Chinese)

    Google Scholar 

  7. Edwards KD, Bombarely A, Story GW, Allen F, Mueller LA, Coates SA, Jones L (2010) TobEA: an atlas of tobacco gene expression from seed to senescence. BMC Genomics 11:142. doi:10.1186/1471-2164-11-142

    Article  PubMed  Google Scholar 

  8. Lu K, Chai Y, Zhang K, Wang R, Chen L, Lei B, Lu J, Xu X, Li J (2008) Cloning and characterization of phosphorus starvation inducible Brassica napus PURPLE ACID PHOSPHATASE12 gene family, and imprinting of a recently evolved MITE-minisatellite twin structure. Theor Appl Genet 117:963–975

    Article  PubMed  CAS  Google Scholar 

  9. Guo Y, Guo H, Zhang L, Xie H, Zhao X, Wang F, Li Z, Wang Y, Ma S, Tao J (2005) Genomic analysis of anti-hepatitis B virus (HBV) activity by small interfering RNA and lamivudine in stable HBV-producing cells. J Virol 79:14392–14403

    Article  PubMed  CAS  Google Scholar 

  10. Yu L, Guo N, Meng R, Liu B, Tang X, Jin J, Cui Y, Deng X (2010) Allicin-induced global gene expression profile of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88:219–229. doi:10.1007/s00253-010-2709-x

    Article  PubMed  CAS  Google Scholar 

  11. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15

    Article  PubMed  Google Scholar 

  12. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, Fang H, Kawasaki ES, Hager J, Tikhonova IR (2006) Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 24:1140–1150

    Article  PubMed  CAS  Google Scholar 

  13. Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70. doi:10.1093/nar/gkq310

    Article  PubMed  CAS  Google Scholar 

  14. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  PubMed  CAS  Google Scholar 

  15. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  17. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.8. http://www.geneious.com/

  18. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  PubMed  CAS  Google Scholar 

  19. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  20. Dijk JP, Leifert C, Barros E, Kok EJ (2010) Gene expression profiling for food safety assessment: examples in potato and maize. Regul Toxicol Pharmacol 58:S21–S25

    Article  PubMed  Google Scholar 

  21. Mueller L, Solow T, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright M, Ahrens R, Wang Y, Herbst E, Keyder E, Menda N, Zamir D, Tanksley S (2005) The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  PubMed  CAS  Google Scholar 

  23. Brandt S, Kloska S, Altmann T, Kehr J (2002) Using array hybridization to monitor gene expression at the single cell level. J Exp Bot 53:2315–2323

    Article  PubMed  CAS  Google Scholar 

  24. Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141–154

    Article  PubMed  CAS  Google Scholar 

  25. Hu H, Boisson-Dernier A, Israelsson-Nordström M, Böhmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI (2009) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12:87–93

    Article  PubMed  Google Scholar 

  26. Sanchez R, Flores A, Cejudo FJ (2006) Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta 223:901–909

    Article  PubMed  CAS  Google Scholar 

  27. Zhou BY, Ding ZS, Zhao M (2011) Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC in rice. Acta Agron Sin 37:112–118

    Article  CAS  Google Scholar 

  28. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  29. Sun W, Bernard C, Van De Cotte B, Van Montagu M, Verbruggen N (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415

    Article  PubMed  CAS  Google Scholar 

  30. Nishizawa A, Yabuta Y, Yoshida E, Maruta T, Yoshimura K, Shigeoka S (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48:535–547

    Article  PubMed  CAS  Google Scholar 

  31. Verpoorte R (2000) Secondary metabolies. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht, pp 1–29

    Google Scholar 

  32. Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Nat Acad Sci USA 100:8595–8600

    Article  PubMed  CAS  Google Scholar 

  33. Nugroho LH, Verpoorte R (2002) Secondary metabolism in tobacco. Plant Cell, Tissue Organ Cult 68:105–125

    Article  CAS  Google Scholar 

  34. Ruiz-Sola MÁ, Rodríguez-Concepción M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. The Arabidopsis Book 10:e0158. doi:10.1199/tab.0158

    PubMed  Google Scholar 

  35. Bezman Y, Bilkis I, Winterhalter P, Fleischmann P, Rouseff RL, Baldermann S, Naim M (2005) Thermal oxidation of 9′-cis-neoxanthin in a model system containing peroxyacetic acid leads to the potent odorant β-damascenone. J Agric Food Chem 53:9199–9206

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz SH, Qin X, Zeevaart JAD (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol 131:1591–1601

    Article  PubMed  CAS  Google Scholar 

  37. Davison P, Hunter C, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    Article  PubMed  CAS  Google Scholar 

  38. Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Key Special Program of China National Tobacco Corporation (TS-02-20110014), the Program of Guizhou Provincial Tobacco Company (2007-04 and 2010-02), the Foundation of Science and Technology of Guizhou Province of China (J[2010]2088), the Fundamental Research Funds for the Central Universities (XDJK2009B009 and XDJK2012A009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20100182120016), the “111” Project (B12006) and the Natural Science Foundation of Chongqing of China (cstc2011jjA80026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu-Zhang Ding or Kun Lu.

Additional information

Bo Lei, Xue-Hua Zhao, Kai Zhang and Fu-Zhang Ding equally contributed to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, B., Zhao, XH., Zhang, K. et al. Comparative transcriptome analysis of tobacco (Nicotiana tabacum) leaves to identify aroma compound-related genes expressed in different cultivated regions. Mol Biol Rep 40, 345–357 (2013). https://doi.org/10.1007/s11033-012-2067-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2067-0

Keywords

Navigation