Skip to main content
Log in

Prevalence of myocardial infarction polymorphisms in Afyonkarahisar, Western Turkey

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate relationship between polymorphisms in genes that are clinical and environmental features and the risk of myocardial infarction (MI) in Afyonkarahisar subjects living in Turkey. Prevalence of the several genes polymorphisms, ≤45 (42.04 ± 3.3) and ≥46 (57.19 ± 7.5) years were studied in individuals with MI and without MI (40.30 ± 9.01) individuals were studied. We tested 140 with MI individuals for factor V (FV) Leiden, FV H1299R, Prothrombin G20210A, factor XIII (FXIII) V34L, β-fibrinogen b-455G/A, plasminogen activator inhibitor-1 (PAI-1)-675 4G/5G, human platelet antigens 1 (HPA-1) a/b, apolipoprotein B (ApoB) R3500Q, apolipoprotein E (ApoE), E2, E3, and E4, angiotensin-converting enzyme (ACE) D/I, 5,10 methylenetetrahydrofolate reductase (MTHFR) 677C/T, and MTHFR 1298A/C polymorphisms using a ViennaLab CVD strip assay. This study results were compared without MI control groups. According to the our results, prothrombin, factor XIII and MTHFRC677T deletions were the most frequent genetic variants in risk groups of hyperlipidemic patients (value of odds ratio sequentially [OR] = 4.5, p = 0.05, [OR] = 2.16, p = 0.04 and [OR] = 2.8, p = 0.09). MTHFRA1298C and PAI-1 deletions were most frequent genetic variants in risk groups for MI in patients with diabetes mellitus (value of odds ratio sequentially [OR] = 3.79, p = 0.06 and [OR] = 5 × 108, p = 0.000). ACE deletions were positively associated with family history of cardiovascular events (OR = 3.62, p = 0.03). We found a strong relationship between genetic variants and risk factors. Significant associations between genetic variants predicting cardiovascular events and common risk factors (hyperlipidemia, smoking, diabetes mellitus and family history) patients were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldman L, Ausiello D (2004) Cecil textbook of medicine, 22nd edn. Elsevier, Amsterdam, p 975, 400–424, 2281–2298

  2. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  4. Eitzman DT, Westrick RJ, Shen Y, Bodary PF, Gu S et al (2005) Homozygosity for factor V Leiden leads to enhanced thrombosis and atherosclerosis in mice. Circulation 111:1822–1825

    Article  CAS  PubMed  Google Scholar 

  5. Lentz SR (2005) Another lesson from the factor V Leiden mouse: thrombin generation drives arterial disease. Circulation 111:1733–1734

    Article  PubMed  Google Scholar 

  6. Rosenberg RD, Aird WC (1999) Vascular-bed-specific hemostasis and hypercoagulable states. N Engl J Med 340:1555–1564

    Article  CAS  PubMed  Google Scholar 

  7. Voetsch B, Loscalzo J (2004) Genetic determinants of arterial thrombosis. Arterioscler Thromb Vasc Biol 24:216–229

    Article  CAS  PubMed  Google Scholar 

  8. Watkins H, Farrall M (2006) Genetic susceptibility to coronary artery disease: from promise to progress. Nat Rev Genet 7:163–173

    Article  CAS  PubMed  Google Scholar 

  9. Ye Z, Liu EH, Higgins JP, Keavney BD, Lowe GD et al (2006) Seven haemostatic gene polymorphisms in coronary disease: meta-analysis of 66,155 cases and 91,307 controls. Lancet 367:651–658

    Article  CAS  PubMed  Google Scholar 

  10. Ajjan R, Grant PJ (2006) Coagulation and atherothrombotic disease. Atherosclerosis 186:240–259

    Article  CAS  PubMed  Google Scholar 

  11. Lane DA, Grant PJ (2000) Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 95:1517–1532

    CAS  PubMed  Google Scholar 

  12. Wang Q (2005) Molecular genetics of coronary artery disease. Curr Opin Cardiol 20:182–188. doi:10.1097/01.hco.0000160373.77190.f1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mayer B, Erdmann J, Schunkert H (2007) Genetics and heritability of coronary artery disease and myocardial infarction. Clin Res Cardiol 96:1–7. doi:10.1007/s00392-006-0447-y

    Article  PubMed  Google Scholar 

  14. Hamsten A, de Faire U, Walldius G (1987) Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 2:3–9

    Article  CAS  PubMed  Google Scholar 

  15. Brown NJ, Agirbasli MA, Williams GH, Litchfield WR, Vaughan DE (1998) Effect of activation and inhibition of the renin–angiotensin system on plasma PAI-1. Hypertension 32:965–971

    Article  CAS  PubMed  Google Scholar 

  16. Larsson PT, Wiman B, Olsson G, Angelin B, Hjemdahl P (1990) Influence of metoprolol treatment on sympatho-adrenal activation of fibrinolysis. Thromb Haemost 63:482–487

    CAS  PubMed  Google Scholar 

  17. Vulin AI, Stanley FM (2004) Oxidative stress activates the plasminogen activator inhibitor type 1 (PAI-1) promoter through an AP-1 response element and cooperates with insulin for additive effects on PAI-1 transcription. J Biol Chem 279:25172–25178

    Article  CAS  PubMed  Google Scholar 

  18. Sawdey MS, Loskutoff DJ (1991) Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-a, and transforming growth factor-h. J Clin Invest 88:1346–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kohler HP, Stickland MH, Ossei-Gerning N et al (1998) Association of a common polymorphism in the factor XIII gene with myocardial infarction. Thromb Haemost 79:8–13

    CAS  PubMed  Google Scholar 

  20. Wartiovaara U, Perola M, Mikkola H et al (1999) Association of FXIII Val34Leu with decreased risk of myocardial infarction in Finnish males. Atherosclerosis 142:295–300

    Article  CAS  PubMed  Google Scholar 

  21. McCormack LJ, Kain K, Catto AJ et al (1998) Prevalence of FXIII V34L in populations with different cardiovascular risk. Thromb Haemost 80:523–524

    CAS  PubMed  Google Scholar 

  22. Franco RF, Reitsma PH, Lourenco D et al (1999) Factor XIII Val34Leu is a genetic factor involved in the aetiology of venous thrombosis. Thromb Haemost 81:676–679

    CAS  PubMed  Google Scholar 

  23. Gemmati D, Serino ML, Ongaro A et al (2001) A common mutation in the gene for coagulation factor XIII-A (VAL34Leu): a risk factor for primary intracerebral hemorrhage is protective against atherothrombotic diseases. Am J Hematol 67:183–188

    Article  CAS  PubMed  Google Scholar 

  24. Reiner AP, Frank MB, Schwartz SM (2002) Coagulation factor XIII polymorphisms and the risk of myocardial infarction and ischaemic stroke in young women. Br J Haematol 116:376–382

    Article  CAS  PubMed  Google Scholar 

  25. Dawson SJ, Wiman B, Hamsten A, Green F, Humphries S, Henney AM (1993) The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene respond differently to interleukin-1 in HepG2 cells. J Biol Chem 268:10739–10745

    CAS  PubMed  Google Scholar 

  26. Eriksson P, Kallin B, van t’Hooft FM, Bavhenolm P, Hamsten A (1995) Allelic-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci 92:1851–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Margaglione M, Cappucci G, Colaizzo D, Giuliani N, Vecchione G, Grandone E, Pennelli O, Di Minno G (1998) The PAI-1 gene locus 4G/5G polymorphism is associated with a family history of coronary artery disease. Arterioscler Thromb Vasc Biol 18:152–156

    Article  CAS  PubMed  Google Scholar 

  28. McGill JB, Schneider DJ, Arfken CL, Lucore CL, Sobel BE (1994) Factors responsible for impaired fibrinolysis in obese subjects and NIDDM patients. Diabetes 43:104–109

    Article  CAS  PubMed  Google Scholar 

  29. Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T et al (1996) Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med 2:800–803

    Article  CAS  PubMed  Google Scholar 

  30. Lyon CJ, Hsueh WA (2003) Effect of plasminogen activator inhibitor-1 in diabetes mellitus and cardiovascular disease. Am J Med 115(Suppl 8A):62S–68S

    Article  CAS  PubMed  Google Scholar 

  31. Shinozaki K, Ayajiki K, Nishio Y, Sugaya T, Kashiwagi A, Okamura T (2004) Evidence for a causal role of the renin–angiotensin system in vascular dysfunction associated with insulin resistance. Hypertension 43:255–262

    Article  CAS  PubMed  Google Scholar 

  32. Kluijtmans LAJ, van den Heuvel LPWJ, Boers GHJ, Frosst P, Stevens EMB, van Oost BA, den Heijer M, Trijbels FJM, Rozen R, Blom HJ (1996) Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet 58:35–41

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Morita H, Taguchi J, Kurihara H, Kitaoka M, Kaneda H, Kurihara Y, Maemura K, Shindo T, Minamino T, Ohno M, Yamaoki K, Ogasawara K, Aizawa T, Suzuki S, Yazaki Y (1997) Genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) as a risk factor for coronary artery disease. Circulation 95:2032–2036

    Article  CAS  PubMed  Google Scholar 

  34. Atherosclerosis, Thrombosis and Vascular Biology Italian Study Group (2003) No evidence of association between prothrombotic gene polymorphisms and the development of acute myocardial infarction at a young age. Circulation 107:1117–1122. doi:10.1161/01.CIR.0000051465.94572.D0

    Google Scholar 

  35. Ardissino D, Mannucci PM, Merlini PA et al (1999) Prothrombotic genetic risk factors in young survivors of myocardial infarction. Blood 94:46–51

    CAS  PubMed  Google Scholar 

  36. Goldstein LB, Adams R, Alberts MJ, Appel LJ, Brass LM, Bushnell CD, Culebras A, Degraba TJ, Gorelick PB, Guyton JR, Hart RG, Howard G, Kelly-Hayes M, Nixon JV, Sacco RL; American Heart Association/American Stroke Association Stroke Council; Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; Quality of Care and Outcomes Research Interdisciplinary Working Group; American Academy of Neurology (2006) Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: the American Academy of Neurology affirms the value of this guideline. Stroke 37:1583–1633 (erratum in: Stroke 38:207 (2007))

    Google Scholar 

  37. Prescott E, Hippe M, Schnohr P, Hein HO, Vestbo J (1998) Smoking and risk of myocardial infarction in women and men: longitudinal population study. Br Med J 316:1043–1047

    Article  CAS  Google Scholar 

  38. Wolf PA, D’Agostino RB, Kannel WB, Bonita R, Belanger AJ (1988) Cigarette smoking as a risk factor for stroke. The Framingham study. J Am Med Assoc 259:1025–1029

    Article  CAS  Google Scholar 

  39. Mamun AA, Peeters A, Barendregt J, Willekens F, Nusselder W, Bonneux L (2004) Smoking decreases the duration of life lived with and without cardiovascular disease: a life course analysis of the Framingham heart study. Eur Heart J 25:409–415

    Article  PubMed  Google Scholar 

  40. Li MD, Payne TJ, Ma JZ, Lou XY, Zhang D, Dupont RT, Crews KM, Somes G, Williams NJ, Elston RC (2006) A genome wide search finds major susceptibility loci for nicotine dependence on chromosome 10 in African Americans. Am J Hum Genet 79:745–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Loukola A, Broms U, Maunu H, Widen E, Heikkila K, Siivola M, Salo A, Pergadia ML, Nyman E, Sammalisto S, Perola M, Agrawal A, Heath AC, Martin NG, Madden PA, Peltonen L, Kaprio J (2007) Linkage of nicotine dependence and smoking behavior on 10q, 7q and 11p in twins with homogeneous genetic background. Pharmacogenom J 8(3):209–219

    Google Scholar 

  42. Smith SC (2007) Multiple risk factors for cardiovascular disease and diabetes mellitus. Am J Med 120(3 Suppl1):S3–S11 (review)

    Article  PubMed  Google Scholar 

  43. Peltonen L, Palotie A, Lange K (2006) Use of population isolates for mapping complex traits. Nat Rev Genet 1:182–190 (review)

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by grants from the Science Faculty of Afyon Kocatepe University Research Project Commission and the project number is 08.TIP.11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Tutgun Onrat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onrat, S.T., Akci, Ö., Söylemez, Z. et al. Prevalence of myocardial infarction polymorphisms in Afyonkarahisar, Western Turkey. Mol Biol Rep 39, 9257–9264 (2012). https://doi.org/10.1007/s11033-012-1799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1799-1

Keywords

Navigation