Skip to main content
Log in

Transcriptional responses to drought stress in root and leaf of chickpea seedling

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chickpea (Cicer arietinum L.) is an important pulse crop grown mainly in the arid and semi-arid regions of the world. Due to its taxonomic proximity with the model legume Medicago truncatula and its ability to grow in arid soil, chickpea has its unique advantage to understand how plant responds to drought stress. In this study, an oligonucleotide microarray was used for analyzing the transcriptomic profiles of unigenes in leaf and root of chickpea seedling under drought stress, respectively. Microarray data showed that 4,815 differentially expressed unigenes were either ≥2-fold up- or ≤0.5-fold down-regulated in at least one of the five time points during drought stress. 2,623 and 3,969 unigenes were time-dependent differentially expressed in root and leaf, respectively. 110 pathways in two tissues were found to respond to drought stress. Compared to control, 88 and 52 unigenes were expressed only in drought-stressed root and leaf, respectively, while nine unigenes were expressed in both the tissues. 1,922 function-unknown unigenes were found to be remarkably regulated by drought stress. The expression profiles of these time-dependent differentially expressed unigenes were useful in furthering our knowledge of molecular mechanism of plant in response to drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  PubMed  CAS  Google Scholar 

  2. Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  3. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–433

    Article  PubMed  CAS  Google Scholar 

  4. Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7:161–167

    Article  PubMed  CAS  Google Scholar 

  5. Campalans A, Messeguer R, Goday A, Pages M (1999) Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiol Biochem 37:327–340

    Article  CAS  Google Scholar 

  6. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  7. Database FAO (2010) http://faostat.fao.org. Accessed Aug and Sep 1997

  8. Jayashree B, Hutokshi KB, Sanjeev S, Jonathan HC (2005) A legume genomics resource: the chickpea root expressed sequence tag database. Electron J Biotechnol 8:128–133

    Article  CAS  Google Scholar 

  9. Romo S, Labrador E, Dopico B (2001) Water stress-regulated gene expression in Cicer arietinum seedlings and plants. Plant Physiol Biochem 39:1017–1026

    Article  CAS  Google Scholar 

  10. Boominathan P, Shukla R, Kumar A, Manna D, Negi D, Verma PK, Chattopadhyay D (2004) Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum. Plant Physiol 135:1608–1620

    Article  PubMed  CAS  Google Scholar 

  11. Mantri N, Ford R, Coram T, Pang E (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8:303

    Article  PubMed  Google Scholar 

  12. Molina C, Rotter B, Horres R, Udupa S, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553

    Article  PubMed  Google Scholar 

  13. Gao WR, Wang XS, Liu QY, Peng H, Chen C, Li JG, Zhang JS, Hu SN, Ma H (2008) Comparative analysis of ESTs in response to drought stress in chickpea (C. arietinum L.). Biochem Biophys Res Commun 376:578–583

    Article  PubMed  CAS  Google Scholar 

  14. Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24

    Article  PubMed  Google Scholar 

  15. Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24

    Article  PubMed  Google Scholar 

  16. Mantri NL, Ford R, Coram TE, Pang ECK (2010) Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea. Environ Exp Bot 69:286–292

    Article  Google Scholar 

  17. Coram TE, Pang ECK (2006) Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnol J 4:647–666

    Article  PubMed  CAS  Google Scholar 

  18. Coram TE, Pang ECK (2007) Transcriptional profiling of chickpea genes differentially regulated by salicylic acid, methyl jasmonate and aminocyclopropane carboxylic acid to reveal pathways of defence-related gene regulation. Funct Plant Biol 34:52–64

    Article  CAS  Google Scholar 

  19. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  20. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  21. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  PubMed  CAS  Google Scholar 

  24. Weinl S, Kudla J (2009) The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528

    Article  PubMed  CAS  Google Scholar 

  25. Alamillo JM, Bartels D (1996) Light and stage of development influence the expression of desiccation-induced genes in the resurrection plant Craterostigma plantagineum. Plant Cell Environ 19:300–310

    Article  CAS  Google Scholar 

  26. Ouvrard O, Cellier F, Ferrare K, Tousch D, Lamaze T, Dupuis JM, Casse-Delbart F (1996) Identification and expression of water stress- and abscisic acid-regulated genes in a drought-tolerant sunflower genotype. Plant Mol Biol 31:819–829

    Article  PubMed  CAS  Google Scholar 

  27. Zeng Q, Chen X, Wood AJ (2002) Two early light-inducible protein (ELIP) cDNAs from the resurrection plant Tortula ruralis are differentially expressed in response to desiccation, rehydration, salinity, and high light. J Exp Bot 53:1197–1205

    Article  PubMed  CAS  Google Scholar 

  28. Peng H, Cheng HY, Chen C, Yu XW, Yang JN, Gao WR, Shi QH, Zhang H, Li JG, Ma H (2009) A NAC transcription factor gene of Chickpea (Cicer arietinum), CarNAC3, is involved in drought stress response and various developmental processes. J Plant Physiol 166:1934–1945

    Article  PubMed  CAS  Google Scholar 

  29. Peng H, Yu X, Cheng H, Shi Q, Zhang H, Li JG, Ma H (2010) Cloning and characterization of a novel NAC family gene CarNAC1 from chickpea (Cicer arietinum L.). Mol Biotechnol 44:30–40

    Article  PubMed  CAS  Google Scholar 

  30. Coram TE, Pang ECK (2005) Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part I. Generation and analysis of an expressed sequence tag (EST) library. Physiol Mol Plant Pathol 66:192–200

    Article  CAS  Google Scholar 

  31. Coram TE, Pang ECK (2005) Isolation and analysis of candidate ascochyta blight defence genes in chickpea. Part II. Microarray expression analysis of putative defence-related ESTs. Physiol Mol Plant Pathol 66:201–210

    Article  CAS  Google Scholar 

  32. Ashraf N, Ghai D, Barman P, Basu S, Gangisetty N, Mandal MK, Chakraborty N, Datta A, Chakraborty S (2009) Comparative analyses of genotype dependent expressed sequence tags and stress-responsive transcriptome of chickpea wilt illustrate predicted and unexpected genes and novel regulators of plant immunity. BMC Genomics 10:415

    Article  PubMed  Google Scholar 

  33. Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KHM, Town CD, Hoisington DA (2009) A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10:523

    Article  PubMed  Google Scholar 

  34. Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58:778–790

    Article  PubMed  CAS  Google Scholar 

  35. Matsumoto T, Wu J, Kanamori H, Katayose Y, Fujisawa M et al (2005) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nature 436:500–793

    Google Scholar 

  36. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  37. Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  PubMed  CAS  Google Scholar 

  38. Lee BR, Jung WJ, Lee BH, Avice JC, Ourry A, Kim TH (2008) Kinetics of drought-induced pathogenesis-related proteins and its physiological significance in white clover leaves. Physiol Plant 132:329–337

    Article  PubMed  CAS  Google Scholar 

  39. Dunwell JM, Gibbings JG, Mahmood T, Naqvi SMS (2008) Germin and germin-like proteins: evolution, structure, and function. Crit Rev Plant Sci 27:342–375

    Article  CAS  Google Scholar 

  40. Zhang Y, Xu WY, Li ZH, Deng XW, Wu WH, Xue YB (2008) F-box protein DOR functions as a novel inhibitory factor for abscisic acid-induced stomatal closure under drought stress in arabidopsis. Plant Physiol 148:2121–2133

    Article  PubMed  CAS  Google Scholar 

  41. Singh KB, Ocampo B, Robertson LD (1998) Diversity for abiotic and biotic stress resistance in the wild annual Cicer species. Genet Resour Crop Evol 45:9–17

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the partial financial support from the projects supported by the National Natural Science Foundation of China (30960201, 30960206, 30860152 and 31160306), from the project supported by the Xinjiang Science and Technology Department of China (200991254), from the projects supported by the National Science and Technology Ministry (2006BAD09A04, 2006BAD09A08), from the project supported by the National Science Foundation for Postdoctoral Scientists of China (20080431107), from the project supported by the Jiangsu Science Foundation of Postdoctoral Scientists of China (0801048B) for this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shubing Shi or Hao Ma.

Additional information

Xiansheng Wang and Ying Liu contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Liu, Y., Jia, Y. et al. Transcriptional responses to drought stress in root and leaf of chickpea seedling. Mol Biol Rep 39, 8147–8158 (2012). https://doi.org/10.1007/s11033-012-1662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1662-4

Keywords

Navigation