Skip to main content
Log in

cDNA-AFLP analysis on bolting or flowering of flowering Chinese cabbage and molecular characteristics of BrcuDFR-like/BrcuAXS gene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The molecular basis of flower bud differentiation in flowering Chinese cabbage (Brassica rapa L. ssp. Chinensis var. utilis Tsen et Lee) was studied in this work. Samples were taken from two varieties, the early-blooming “Youqin 49” and the late-blooming “Youqingtiancaixin 80”, at five different developmental stages and studied via cDNA-AFLP. Nineteen expression sequence tags (ESTs) associated with bolting or flowering were isolated and cloned. Blast results indicated that 15 ESTs were involved in the synthesis of anthocayanins, photosynthesis, signal transduction, and phytochrome production. Two ESTs had high similarity to hypothetical proteins with unknown function. Two other ESTs shared no similarity to any sequence in the NCBI database and potentially may be newly identified genes. The deduced amino acid sequences of EST amplified by primer A6T4 or A8T4 had high similarity to both dihydroflavonol reductase (DFR) and UDP-d-apiose/UDP-d-xylose synthase (AXS), thus was named BrcuDFR-like/BrcuAXS. Using the cDNA sequence, a putative BrcuDFR-like/BrcuAXS gene was cloned and characterized from flowering Chinese cabbage via rapid amplification of cDNA ends (RACE). The full-length cDNA has 1332 bp with an open frame of 919 bp which codes for a polypeptide of 313 amino acids. The corresponding genome sequence is 2,046 bp. Comparison of cDNA and its corresponding genomic sequence indicates that BrcuDFR-like/BrcuAXS contains 9 exons and 8 introns. The temporal expression patterns indicated the gene is more likely to encode the DFR protein, which catalyzes the synthesis of anthocayanins, than UDP-d-apiose/UDP-d-xylose synthase (AXS), which catalyzes the conversion of UDP-d-glucuronate to a mixture of UDP-d-apiose and UDP-d-xylose. Further work is needed to determine what role BrcuDFR-like/BrcuAXS plays during floral organ development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

cDNA-AFLP:

cDNA-amplified fragment length polymorphism

ORF:

Open reading frame

PCR:

Polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcriptase polymerase chain reaction

TDF:

Transcript-derived fragment

References

  1. Tan FC, Swain SM (2006) Genetics of flower initiation and development in annual and perennial plants. Physiol Plant 128:8–17

    Article  CAS  Google Scholar 

  2. Chia TY et al (2008) Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus. J Exp Bot 59:2735–2748

    Article  PubMed  CAS  Google Scholar 

  3. Xiao XF et al (2008) Study on flower bud differentiation and cloning and expression of BrcuFLC in Brassica campestris L. ssp. chinensis (L.) Makino var. utilis. Acta Horticulture Sinica 35:827–832

    CAS  Google Scholar 

  4. Cao JS et al (2006) Functional analysis of a novel male fertility CYP86MF gene in Chinese cabbage (Brassica campestris L. ssp. chinensis Makino). Plant Cell Rep 24:715–723

    Article  PubMed  CAS  Google Scholar 

  5. Ming CC et al (2012) Characterizationofanewmalesterility-relatedgene Camf1 in Capsicumannum L. Mol Biol Rep 39(4):737–744

    Google Scholar 

  6. Huang L, Cao JS, Zhang AH, Ye YQ (2008) Characterization of a putative pollen-specific arabinogalactan protein gene, BcMF8, from Brassica campestris ssp. chinensis. Mol Biol Rep 35(4):631–639

    Article  PubMed  CAS  Google Scholar 

  7. Song JH, Zhang LX, Cao JS (2009) Molecular cloning and characterization of a novel pollen predominantly membrane protein gene BcMF12 from Brassica campestris ssp. chinensis. Mol Biol Rep 36(8):2307–2314

    Article  PubMed  CAS  Google Scholar 

  8. Li YY et al (2008) BcMF13, a new reproductive organ-specific gene from Brassica rapa. ssp. chinensis, affects pollen development. Mol Biol Rep 35:207–214

    Article  PubMed  CAS  Google Scholar 

  9. Li YY, Cao JS (2009) Morphological and functional characterization of BcMF13 in the antisense-silenced plants of Brassica campestris ssp. chinensis var. parachinensis. Mol Biol Rep 36(5):929–937

    Article  PubMed  CAS  Google Scholar 

  10. Tian AM et al (2009) Characterization of a male sterile related gene BcMF15 from Brassica campestris ssp. Chinensis. Mol Biol Rep 36:307–314

    Article  PubMed  CAS  Google Scholar 

  11. Huang L et al. (2010) A polygalacturonase inhibitory protein gene (BcMF19) expressed during pollen development in Chinese cabbage-pak-choi. Mol Biol Rep. doi:10.1007/s11033-010-0139-6

  12. Guan PC, Liang CY (1985) Study on the growth and development and formation of product organ in Brassica parachinensis—relation of growth and development of the flowering formation. Acta Horticulture Sinica 1:6

    Google Scholar 

  13. Sun BJ et al (2006) cDNA-AFLP analysis on genes associated with vernalization in vitro in Brassica campestris ssp. chinensis. Acta Horticulture Sinica 33:1342–1344

    Google Scholar 

  14. Liu GD et al (2009) Cloning and sequence analysis of a DFR gene from Fagopyrum dibotrys (D.Don) Hara. Scientia Agricultura Sinica 42:55–63

    CAS  Google Scholar 

  15. Xu YY et al (2001) Expression patterns of a vernalization-related genes responding to jasmonate. Acta Bot Sin 43:871–873

    CAS  Google Scholar 

  16. Ahn JW et al (2006) Depletion of UDP-d-apiose/UDP-d-xylose Synthases Results in rhamnogalacturonan-ii deficiency, cell wall thickening, and cell death in higher plants. J Biol Chem 281:13708–13716

    Article  PubMed  CAS  Google Scholar 

  17. Koes RE, Quanttrocchio F, Mol JMN (1994) The flavonoid biosynthetic pathway in plants: function and evolution. BioEssays 16:123–132

    Article  CAS  Google Scholar 

  18. Holton TA, Cornish EC (1995) Genetic and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  PubMed  CAS  Google Scholar 

  19. Shirley BW, Kubasek WL, Storz G (1995) Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  PubMed  CAS  Google Scholar 

  20. Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids: an old mine for metabolic engineering. Trends Plant Sci 4:394–400

    Article  PubMed  Google Scholar 

  21. Lo Piero AR, Puglisi I, Petrone G (2006) Gene characterization, analysis of expression and in vitro synthesis of dihydroflavonol 4-reductase from [Citrus sinensis (L.) Osbeck]. Phytochemistry 67:684–695

    Article  PubMed  CAS  Google Scholar 

  22. Shimada S et al (2004) Dihydroflavonol 4-reductase cDNA from non-anthocyanin producing species in the Caryophyllales. Plant Cell Physiol 45:1290–1298

    Article  PubMed  CAS  Google Scholar 

  23. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  24. Xie DY, Sharma SB, Dixon RA (2004) Anthocyanidin reductases from Medicago truncatula and Arabidopsis thaliana. Arch Biochem Biophys 422:91–102

    Article  PubMed  CAS  Google Scholar 

  25. Devic M et al (1999) The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J 19:387–398

    Article  PubMed  CAS  Google Scholar 

  26. Xie DY et al (2003) Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396–399

    Article  PubMed  CAS  Google Scholar 

  27. Inagaki Y, Johzuka-Hisatomi Y, Mori T (1999) Genomoic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories. Gene 226:181–188

    Article  PubMed  CAS  Google Scholar 

  28. Ostergaard L et al (2001) Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily. Plant Sci 160:463–472

    Article  PubMed  CAS  Google Scholar 

  29. Peters DJ, Constabel CP (2002) Molecular analysis of herbivore-induced condensed tannin synthesis: Cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides). Plant J 32:701–712

    Article  PubMed  CAS  Google Scholar 

  30. Dooner HK, Robbins TP, Jorgensen RA (1991) Genetic and developmental control of anthocyanin biosynthesis. Annu Rev Genet 25:173–199

    Article  PubMed  CAS  Google Scholar 

  31. Kristiansen KN, Rohde W (1991) Structure of the Hordeum vulgare gene encoding dihydroflavonol-4-reductase and molecular analysis of ant18 mutants blocked in flavonoid synthesis. Mol Gen Genet 230:49–59

    Article  PubMed  CAS  Google Scholar 

  32. Shirley BW, Hanley S, Goodman HM (1992) Effects of ionizing radiation on a plant genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell 4:333–347

    Article  PubMed  CAS  Google Scholar 

  33. Bartelsman MB et al (1994) Characterization of the gene encoding dihydroflavonol 4-reductase in tomato. Gene 138:153–157

    Article  Google Scholar 

  34. Sparvoli F et al (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  PubMed  CAS  Google Scholar 

  35. Chen M, SanMiguel P, Bennetzen JL (1998) Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. Genetics 148:435–443

    PubMed  CAS  Google Scholar 

  36. Hoshino A, Johzuka-Hisatomi Y, Iida S (2001) Gene duplication and mobile genetic elements in the morning glories. Gene 265:1–10

    Article  PubMed  CAS  Google Scholar 

  37. Elomaa P et al (1998) bHLH transcription factor mediates organ, region and flower type specific signals on dihydroflavonol-4-reductase (dfr) gene expression in the inflorescence of Gerbera hybrida (Asteraceae). Plant J 16:93–99

    Article  PubMed  CAS  Google Scholar 

  38. Baker ME, Blasco R (1992) Expansion of the mammalian 3 beta-hydroxysteroid dehydrogenase/plant dihydroflavonol reductase superfamily to include a bacterial cholesterol dehydrogenase, a bacterial UDP-galactose-4-epimerase, and open reading frames in vaccinia virus and fish lymphocystis disease virus. FEBS Lett 301:89–93

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of Jiangxi Province, P. R. China (Grant No. 2010GQN0032) and the Department of Education of Jiangxi Province, P. R. China (Grant No. GJJ11084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Lei.

Additional information

Xufeng Xiao and Bihao Cao contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Lei, J., Cao, B. et al. cDNA-AFLP analysis on bolting or flowering of flowering Chinese cabbage and molecular characteristics of BrcuDFR-like/BrcuAXS gene. Mol Biol Rep 39, 7525–7531 (2012). https://doi.org/10.1007/s11033-012-1586-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1586-z

Keywords

Navigation