Skip to main content
Log in

Two types of ATPases from the Pacific white shrimp, Litopenaeus vannamei in response to environmental stress

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

V-H ATPase and NaK ATPase are important classes of ATP-driven proton pumps that are present in the intracellular and plasma membranes of eukaryotic cells and play diverse roles in both normal and abnormal cellular processes. Among the subunits of the V-H ATPase complex, subunit a is a transmembrane glycoprotein that plays crucial roles in metabolism, growth, survival and cellular immunity. NaK ATPase subunit beta is thought to participate in the proper folding and movement of the NaK ATPase enzyme and may also aid cation transport. In this study, we analyzed the functions of V-H ATPase subunit a and NaK ATPase subunit beta from the Pacific white shrimp, Litopenaeus vannamei. Full-length cDNAs of the genes corresponding to V-H ATPase subunit a and NaK ATPase subunit beta were obtained, which were 2654 and 2055 bp long, with open reading frames encoding 830 and 313 amino acids, respectively. RT-PCR analysis indicated that mRNA transcripts were strongly (but differentially) expressed in the gills and hepatopancreas, and at lower levels in other shrimp tissues. In this study, for the first time, the gene expression of V-H ATPase subunit a and NaK ATPase beta of white shrimp Litopenaeus vannamei were analysed by quantitative real-time PCR after exposure to five kinds of environmental stresses (bacteria, pH, Cd, salinity and low temperature). The results demonstrate that both of the two genes are sensitive and involved in all different stress responses and are more sensitive to salinity than other stresses. And they may have relationship with the anti-stress mechanism induced by environment stress in shrimp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang WN, Wang AL, Chen L, Liu Y, Sun RY (2002) Effects of pH on survival, phosphorus concentration, adenylate energy charge and Na+-K+ ATPase activities of Penaeus chinensis Osbeck juveniles. Aquatic Toxicology 60:75–83

    Article  PubMed  CAS  Google Scholar 

  2. Christensen JD, Monaco ME, Lowery TA (1997) An index to assess the sensitivity of Gulf of Mexico species to changes in estuarine salinity regimes. Gulf Res Rep 9(4):219–229

    Google Scholar 

  3. Pan LQ, Luan ZH, Jin CX (2006) Effects of Na+/K+ and Mg2+/Ca2+ ratios in saline groundwaters on Na+-K+-ATPase activity, survival and growth of Marsupenaeus japonicus postlarvae. Aquaculture 261:1396–1402

    Article  CAS  Google Scholar 

  4. Hennig OL, Andreatta ER (1998) Effect of temperature in an intensive nursery system for Penaeus paulensis (Pérez Farfante, 1967). Aquaculture 164:167–172

    Article  Google Scholar 

  5. Chien LT, Hwang DF (2001) Effects of thermal stress and vitamin C on lipid peroxidation and fatty acid composition in the liver of thornfish Terapon jarbua. Comp Biochem Physiol 128B:91–97

    CAS  Google Scholar 

  6. Malev O, Rut M, Maguire I, Tambuk A, Ferrero EA, Lorenzon S, Klobučar GIV (2010) Genotoxic, physiological and immunological effects caused by temperature increase, air exposure or food deprivation in freshwater crayfish Astacus leptodactylus. Comp Biochem Physiol 152C:433–443

    Google Scholar 

  7. Wang WN, Zhou J, Wang P, Tian TT, Zheng Y, Liu Y, Mai WJ, Wang AL (2009) Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute pH stress. Comp Biochem Physiol 150C:428–435

    CAS  Google Scholar 

  8. Chang M, Wang WN, Wang AL, Tian TT, Wang P, Zheng Y, Liu Y (2009) Effects of cadmium on respiratory burst, intracellular Ca2+ and DNA damage in the white shrimp Litopeneaus vannamei. Comp Biochem Physiol 149C:581–586

    CAS  Google Scholar 

  9. Liu CH, Cheng W, Hsu JP, Chen JC (2004) Vibrio alginolyticus infection in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis Aquatic Org 61:169–174

    Article  CAS  Google Scholar 

  10. Zhang XW, Xu WT, Wang XW, Mu Y, Zhao XF, Yu XQ, Wang JX (2009) A novel C-type lectin with two CRD domains from Chinese shrimp Fenneropenaeus chinensis functions as a pattern recognition protein. Mol Immunol 46:1626–1637

    Article  PubMed  CAS  Google Scholar 

  11. Zhou J, Wang WN, He WY, Zheng Y, Wang L, Xin Y, Liu Y, Wang AL (2010) Expression of HSP60 and HSP70 in white shrimp, Litopenaeus vannamei in response to bacterial challenge. J Invertebr Pathol 103:170–178

    Article  PubMed  CAS  Google Scholar 

  12. Zhou J, Wang WN, Ma GZ, Wang AL, He WY, Wang P, Liu Y, Liu JJ, Sun RY (2008) Gene expression of ferritin in tissue of the Pacific white shrimp, Litopenaeus vannamei after exposure to pH stress. Aquaculture 275:356–360

    Article  CAS  Google Scholar 

  13. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  14. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Natl Rev Mol Cell Biol 3(2):94–103

    Article  CAS  Google Scholar 

  15. Leng XH, Manolson MF, Liu Q, Forgac M (1996) Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase. J Biol Chem 271:22487–22493

    Article  PubMed  CAS  Google Scholar 

  16. Leng XH, Manolson MF, Forgac M (1998) Function of the COOH-terminal domain of Vph1p in activity and assembly of the yeast V-ATPase. J Biol Chem 273:6717–6723

    Article  PubMed  CAS  Google Scholar 

  17. Soonthornchai W, Rungrassamee W, Karoonuthaisiri N, Jarayabhand P, Klinbunga S, Soderhall K, Jiravanichpaisal P (2010) Expression of immune-related genes in the digestive organ of shrimp, Penaeus monodon, after an oral infection by Vibrio harveyi. Dev Comp Immunol 34:19–28

    Article  PubMed  CAS  Google Scholar 

  18. Liu CH, Tseng MC, Cheng W (2007) Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its expression following Vibrio alginolyticus infection. Fish Shellfish Immunol 23:34–45

    Article  PubMed  Google Scholar 

  19. Viarengo A (1990) Heavy metal effects on lipid peroxidation in the tissues of Mytilus galloprovincialis. Comp Biochem Physiol 97C:37–42

    CAS  Google Scholar 

  20. Péqueux A (1995) Osmotic regulation in crustaceans. J Crustac Biol 15:1–60

    Article  Google Scholar 

  21. Böttcher K, Siebers S (1993) Biochemistry, localization, and physiology of carbonic anhydrase in the gills of euryhaline crabs. J Exp Zool 265:398–409

    Article  Google Scholar 

  22. Weihrauch D, Becker W, Postel U, Riestenpatt S, Siebers D (1998) Active excretion of ammonia across the gills of the shore crab Carcinus maenas and its relation to osmoregulatory ion uptake. J Comp Physiol 168B:364–376

    Google Scholar 

  23. Weihrauch D, Becker W, Postel U, Luck-Kopp S, Siebers D (1999) Potential of active excretion of ammonia in three different haline species of crabs. J Comp Physiol 169B:25–37

    Google Scholar 

  24. Weihrauch D, Morris S, Towle DW (2004) Ammonia excretion in aquatic terrestrial crabs. J Exp Biol 207:4491–4509

    Article  PubMed  CAS  Google Scholar 

  25. Clavero-Salas A, Sotelo-Mundo RR, Gollas-Galvan T, Hernandez-Lopez J, Peregrino-Uriarte AB, Muhlia-Almazan A, Yepiz-Plascencia G (2007) Transcriptome analysis of gills from the white shrimp Litopenaeus vannamei infected with White Spot Syndrome Virus. Fish Shellfish Immunol 23:459–472

    Article  PubMed  CAS  Google Scholar 

  26. Martin GG, Quintero M, Quigley M, Khosrovian H (2000) Elimination of sequestered material from the gills of decapod crustaceans. J Crustac Biol 20:209–217

    Article  Google Scholar 

  27. Burgents JE, Burnett LE, Stabb EV, Burnett KG (2005) Localization and bacteriostasis of Vibrio introduced into the Pacific white shrimp, Litopenaeus vannamei. Dev Comp Immunol 29:681–691

    Article  PubMed  CAS  Google Scholar 

  28. Lee DH, Lee CB (2000) Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Sci 159:75–85

    Article  PubMed  CAS  Google Scholar 

  29. Serrano R (1989) Structure and function of plasma membrane ATPase. Ann Rev Plant Physiol Plant Mol Biol 40:61–94

    Article  CAS  Google Scholar 

  30. Morgan JD, Iwama GK (1998) Salinity effects on oxygen consumption, gill Na+, K+-ATPase and ion regulation in juvenile coho salmon. J Fish Biol 53:1110–1119

    CAS  Google Scholar 

  31. Kelly SP, Chow INK, Woo NYS (1999) Alterations in Na+-K+-ATPase activity and gill chloride cell morphometrics of juvenile black sea bream (Mylio macrocephalus) in response to salinity and ration size. Aquaculture 172:351–367

    Article  CAS  Google Scholar 

  32. Kelly SP, Chow INK, Woo NYS (1999) Haloplasticity of black seabream (Mylio macrocephalus): hypersaline to freshwater acclimation. J Exp Zool 283:226–241

    Article  CAS  Google Scholar 

  33. Imsland AK, Gunnarsson S, Foss A, Stefansson SO (2003) Gill Na+, K+-ATPase activity, plasma chloride and osmolality in juvenile turbot (Scophthalmus maximus) reared at different temperatures and salinities. Aquaculture 218:671–683

    Article  CAS  Google Scholar 

  34. Scott GR, Richards JG, Forbush B, Isenring P, Schulte PM (2004) Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer. Am J Physiol Cell Physiol 287:C300–C309

    Article  PubMed  CAS  Google Scholar 

  35. Lin YM, Chen CN, Lee TH (2003) The expression of gill Na, K-ATPase in milkfish, Chanos chanos, acclimated to seawater, brackish water and fresh water. Comp Biochem Physiol 135A:489–497

    CAS  Google Scholar 

  36. Lin CH, Tsai RS, Lee TH (2004) Expression and distribution of Na+, K+-ATPase in gills and kidneys of the green spotted pufferfish, Tetraodon nigroviridis, in response to salinity challenge. Comp Biochem Physiol 138A:287–295

    CAS  Google Scholar 

  37. Lin YM, Chen CN, Yoshinaga T, Tsai SC, Shen ID, Lee TH (2006) Short-term effects of hyposmotic shock on Na+/K+-ATPase expression in gills of the euryhaline milkfish, Chanos chanos. Comp Biochem Physiol 143A:406–415

    CAS  Google Scholar 

  38. Kasamo K, Yamaguchi M, Nakamura Y (2000) Mechanism of the chilling-induced decrease in proton pumping across the tonoplast of rice cells. Plant Cell Physiol 41:840–849

    Article  PubMed  CAS  Google Scholar 

  39. Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125:2068–2077

    Article  PubMed  CAS  Google Scholar 

  40. Liang YC, Zhang WH, Chen Q, Ding RX (2005) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37

    Article  CAS  Google Scholar 

  41. Gevaudant F, Duby G, von Stedingk E, Zhao RM, Morsomme P, Boutry M (2007) Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiol 144:1763–1776

    Article  PubMed  CAS  Google Scholar 

  42. Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  43. Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980

    Article  PubMed  CAS  Google Scholar 

  44. Muramatsu Y, Harada A, Ohwaki Y, Kasahara Y, Takagi S, Fukuhara T (2002) Salt-tolerant ATPase activity in the plasma membrane of the marine angiosperm Zostera marina L. Plant Cell Physiol 43:1137–1145

    Article  PubMed  CAS  Google Scholar 

  45. Mariamma M, Muthukumar B, Gnanam A (1997) Thermotolerance and effect of heat shock on the stability of the ATPase enzyme in rice. J Plant Physiol 150:739–742

    Article  CAS  Google Scholar 

  46. Veselov AP, Kurganova LN, Likhacheva AV, Sushkova UA (2002) Possible regulatory effect of lipid peroxidation on the H+-ATPase activity of the plasmalemma under stress conditions. Russ J Plant Physiol 49:344–348

    Article  CAS  Google Scholar 

  47. Lucu Č, Towle DW (2003) Na+-K+-ATPase in gills of aquatic crustacea. Comp Biochem Physiol 135A:195–214

    CAS  Google Scholar 

  48. Stem S, Bacat A, Cahem D (1984) Characterization of Na+, K+-ATPase from the gills of the freshwater prawn Macrobrachian rosenbergii (De Man). Comp Biochem Physiol 79B:47–50

    Google Scholar 

  49. Kosilo B, Bigalke T, Graszyski K (1988) Purification and characterization of gill (Na+-K+)-ATPase in the freshwater crayfish Orconectes limosus rutinesque. Comp Biochem Physiol 89B:171–177

    Google Scholar 

  50. Corotto FS, Holliday CW (1996) Branchial Na+-K+-ATPase and osmoregulation in the purple shore crab Hemigrapsus nudus (Dana). Comp Biochem Physiol 113A:361–368

    Article  CAS  Google Scholar 

  51. Oliveira PF, Lopes IA, Barrias C, Rebelo da Costa AM (2004) H+-ATPase of crude homogenate of the outer mantle epithelium of Anodonta cygnea. Comp Biochem Physiol 139A:425–432

    CAS  Google Scholar 

  52. Ferraris RP, Parado-Estepa FD, Ladfa JM (1986) Effect of salinity on the osmotic, loride, total protein and calcium concentrations in the hemolymph of the prawn Penaeus monodon. Comp Biochem Physiol 83A:701–708

    Article  CAS  Google Scholar 

  53. Lima AG, McNamara JC, Terra WR (1997) Regulation of hemolymph osmolytes and gill Na+/K+-ATPase activities during acclimation to saline in the freshwater shrimp Macrobrachium olfersii (Wegmann,1836) (Decapoda, Palamonidae). J Exp Mar Biol Ecol 215:81–91

    Article  CAS  Google Scholar 

  54. Furriel RPM, McNamara JC, Leone FA (2000) Characterization of Na+ K+-ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii. Comp Biochem Physiol 26B:303–315

    Google Scholar 

  55. Davis DA, Saoud IP, McGraw WJ, Rouse DB (2002) Considerations for Litopenaeus vannamei reared in inland low salinity waters. In: Cruz-Suarez E, Rique-Marie D, Tapia- Salazar M, Gaxiola G, Simoes N (eds) Avances en Nutrición Acuícola: Memorias del VI Simposium Internacional de Nutrición Acuícola, pp 73–94. 3 al 6 de septiembre del

  56. Saoud IP, Davis DA, Rouse DB (2003) Suitability studies of inland well waters for Litopenaeus vannamei culture. Aquaculture 217:373–383

    Article  Google Scholar 

  57. Castille FL, Lawrence AL (1981) The effect of salinity on the osmotic, sodium and chloride concentrations in the hemolymph of euryhaline shrimp of the genus Penaeus. Comp Biochem Physiol 68A:75–80

    Article  Google Scholar 

  58. Thevenod F (1999) Cadmium (CD)-mediated oxidative stress in proximal tubule (PT) cells induces degradation of Na+/K+-ATPase through proteasomal and endo-/lysosomal proteolytic pathways. FASEB J 13:A64

    Google Scholar 

  59. Kumlu M, Kumlu M, Turkmen S (2010) Combined effects of temperature and salinity on critical thermal minima of pacific white shrimp Litopenaeus vannamei (Crustacea: Penaeidae). J Therm Biol 35:302–304

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant nos. 30570287 and 30970455), and the Natural Science Foundation of the Guangdong Province in the P. R. China (grant nos. 06025052 and 8151063101000035), and Guangdong Provincial Oceanic Fisheries Science and Technology Project (grant no. A201001H02 and A200901H06) and the Project of the Department of Education of Guangdong Province for the Young Researcher of Higher School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Na Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 905 kb)

Supplementary material 2 (DOC 583 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Wang, WN., Liu, Y. et al. Two types of ATPases from the Pacific white shrimp, Litopenaeus vannamei in response to environmental stress. Mol Biol Rep 39, 6427–6438 (2012). https://doi.org/10.1007/s11033-012-1461-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1461-y

Keywords

Navigation