Skip to main content
Log in

Associations between matrilin-1 gene polymorphisms and adolescent idiopathic scoliosis curve patterns in a Korean population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

An Erratum to this article was published on 24 June 2012

Abstract

Adolescent idiopathic scoliosis (AIS) is a complex disorder with an unclear etiology and pathogenesis. In previous studies, genome-wide linkage and genetic association analyses have been carried out to find genetic factors linked with AIS. In this study, we examined whether the susceptibility to AIS is associated with MATN1 gene polymorphisms in a Korean population, which included 166 individuals with AIS and 126 controls. We found that there were no statistically significant associations between any of the MATN1-linked allele or genotype frequencies between AIS and controls. However, statistically significant associations were found at single nucleotide polymorphism (SNP) rs1065755 when comparing the curve patterns of AIS with the controls. The A allele of SNP rs1065755 was associated with a higher risk of AIS than the allele G in the genotype–phenotype (curve pattern) analysis (P = 0.029). In addition, the frequency of the A allele of SNP rs1065755 in AIS with double major curves was higher than in controls (P = 0.021, ORs = 2.56 within 95% CI = 1.12–5.83). Additionally, among the predicted common haplotypes, the frequency of the haplotype GATT (31.3%) in AIS with double major curves was higher than in controls (15.2%) (P = 0.024, ORs = 2.54 within 95% CI = 1.11–5.84). We conclude that the A allele of SNP rs1065755 in the MATN1 gene is associated with AIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rogala EJ, Drummond DS, Gurr J (1978) Scoliosis: incidence and natural history. A prospective epidemiological study. J Bone Joint Surg Am 60:173–176

    PubMed  CAS  Google Scholar 

  2. Kane WJ (1977) Scoliosis prevalence: a call for a statement of terms. Clin Orthop Relat Res 126:43–46

    PubMed  Google Scholar 

  3. Parent S, Newton PO, Wenger DR (2005) Adolescent idiopathic scoliosis: etiology, anatomy, natural history, and bracing. Instr Course Lect 54:529–536

    PubMed  Google Scholar 

  4. Weinstein SL (1989) Adolescent idiopathic scoliosis: prevalence and natural history. Instr Course Lect 38:115–128

    PubMed  CAS  Google Scholar 

  5. Lowe TG, Edgar M, Margulies JY et al (2000) Etiology of idiopathic scoliosis: current trends in research. J Bone Joint Surg Am 82-A:1157–1168

    PubMed  CAS  Google Scholar 

  6. Barrack RL, Whitecloud TS III, Burke SW et al (1984) Proprioception in idiopathic scoliosis. Spine (Phila Pa 1976) 9:681–685

    Article  CAS  Google Scholar 

  7. Dickson RA (1988) The aetiology of spinal deformities. Lancet 1:1151–1155

    Article  PubMed  CAS  Google Scholar 

  8. Miller NH (2002) Genetics of familial idiopathic scoliosis. Clin Orthop Relat Res 401:60–64

    Article  PubMed  Google Scholar 

  9. Burwell RG (2003) Aetiology of idiopathic scoliosis: current concepts. Pediatr Rehabil 6:137–170

    PubMed  CAS  Google Scholar 

  10. Kesling KL, Reinker KA (1997) Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine (Phila Pa 1976) 22:2009–2014 discussion 2015

    Article  CAS  Google Scholar 

  11. Cowell HR (1970) Genetic aspects of orthopedic diseases. Am J Nurs 70:763–767

    Article  PubMed  CAS  Google Scholar 

  12. Riseborough EJ, Wynne-Davies R (1973) A genetic survey of idiopathic scoliosis in Boston, Massachusetts. J Bone Joint Surg Am 55:974–982

    PubMed  CAS  Google Scholar 

  13. Wynne-Davies R (1968) Familial (idiopathic) scoliosis, A family survey. J Bone Joint Surg Br 50:24–30

    PubMed  CAS  Google Scholar 

  14. Chen Z, Tang NL, Cao X et al (2009) Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur J Hum Genet 17:525–532

    Article  PubMed  Google Scholar 

  15. Qiu XS, Tang NL, Yeung HY et al (2007) Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res 462:53–58

    Article  PubMed  Google Scholar 

  16. Wu J, Qiu Y, Zhang L et al (2006) Association of estrogen receptor gene polymorphisms with susceptibility to adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 31:1131–1136

    Article  Google Scholar 

  17. Qiu XS, Tang NL, Yeung HY et al (2007) Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 32:1748–1753

    Article  Google Scholar 

  18. Inoue M, Minami S, Nakata Y et al (2002) Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine (Phila Pa 1976) 27:2357–2362

    Article  Google Scholar 

  19. Aksenovich TI, Semenov IR, Ginzburg E et al (1988) Preliminary analysis of inheritance of scoliosis. Genetika 24:2056–2063

    PubMed  CAS  Google Scholar 

  20. Miller NH, Justice CM, Marosy B et al (2005) Identification of candidate regions for familial idiopathic scoliosis. Spine (Phila Pa 1976) 30:1181–1187

    Article  Google Scholar 

  21. Justice CM, Miller NH, Marosy B et al (2003) Familial idiopathic scoliosis: evidence of an X-linked susceptibility locus. Spine (Phila Pa 1976) 28:589–594

    Google Scholar 

  22. Wise CA, Barnes R, Gillum J et al (2000) Localization of susceptibility to familial idiopathic scoliosis. Spine (Phila Pa 1976) 25:2372–2380

    Article  CAS  Google Scholar 

  23. Salehi LB, Mangino M, De Serio S et al (2002) Assignment of a locus for autosomal dominant idiopathic scoliosis (IS) to human chromosome 17p11. Hum Genet 111:401–404

    Article  PubMed  CAS  Google Scholar 

  24. Alden KJ, Marosy B, Nzegwu N et al (2006) Idiopathic scoliosis: identification of candidate regions on chromosome 19p13. Spine (Phila Pa 1976) 31:1815–1819

    Article  Google Scholar 

  25. Chan V, Fong GC, Luk KD et al (2002) A genetic locus for adolescent idiopathic scoliosis linked to chromosome 19p13.3. Am J Hum Genet 71:401–406

    Article  PubMed  CAS  Google Scholar 

  26. Bashiardes S, Veile R, Allen M et al (2004) SNTG1, the gene encoding gamma1-syntrophin: a candidate gene for idiopathic scoliosis. Hum Genet 115:81–89

    Article  PubMed  CAS  Google Scholar 

  27. Ocaka L, Zhao C, Reed JA et al (2008) Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2–q34.2 and 17q25.3-qtel. J Med Genet 45:87–92

    Article  PubMed  CAS  Google Scholar 

  28. Gao X, Gordon D, Zhang D et al (2007) CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis. Am J Hum Genet 80:957–965

    Article  PubMed  CAS  Google Scholar 

  29. Wang H, Wu Z, Zhuang Q et al (2008) Association study of tryptophan hydroxylase 1 and arylalkylamine N-acetyltransferase polymorphisms with adolescent idiopathic scoliosis in Han Chinese. Spine (Phila Pa 1976) 33:2199–2203

    Article  Google Scholar 

  30. Carr AJ, Ogilvie DJ, Wordsworth BP et al (1992) Segregation of structural collagen genes in adolescent idiopathic scoliosis. Clin Orthop Relat Res 274:305–310

    PubMed  Google Scholar 

  31. Miller NH, Mims B, Child A et al (1996) Genetic analysis of structural elastic fiber and collagen genes in familial adolescent idiopathic scoliosis. J Orthop Res 14:994–999

    Article  PubMed  CAS  Google Scholar 

  32. Deak F, Wagener R, Kiss I et al (1999) The matrilins: a novel family of oligomeric extracellular matrix proteins. Matrix Biol 18:55–64

    Article  PubMed  CAS  Google Scholar 

  33. Chen Q, Johnson DM, Haudenschild DR et al (1995) Cartilage matrix protein forms a type II collagen-independent filamentous network: analysis in primary cell cultures with a retrovirus expression system. Mol Biol Cell 6:1743–1753

    PubMed  CAS  Google Scholar 

  34. Montanaro L, Parisini P, Greggi T et al (2006) Evidence of a linkage between matrilin-1 gene (MATN1) and idiopathic scoliosis. Scoliosis 1:21

    Article  PubMed  Google Scholar 

  35. Lenke LG, Betz RR, Harms J et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83-A:1169–1181

    PubMed  CAS  Google Scholar 

  36. Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  PubMed  CAS  Google Scholar 

  37. Kimchi-Sarfaty C, Oh JM, Kim IW et al (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528

    Article  PubMed  CAS  Google Scholar 

  38. Chao HK, Hsiao KJ, Su TS (2001) A silent mutation induces exon skipping in the phenylalanine hydroxylase gene in phenylketonuria. Hum Genet 108:14–19

    Article  PubMed  CAS  Google Scholar 

  39. Montera M, Piaggio F, Marchese C et al (2001) A silent mutation in exon 14 of the APC gene is associated with exon skipping in a FAP family. J Med Genet 38:863–867

    Article  PubMed  CAS  Google Scholar 

  40. Blank RD, Raggio CL, Giampietro PF et al (1999) A genomic approach to scoliosis pathogenesis. Lupus 8:356–360

    Article  PubMed  CAS  Google Scholar 

  41. Giampietro PF, Raggio CL, Blank RD (1999) Synteny-defined candidate genes for congenital and idiopathic scoliosis. Am J Med Genet 83:164–177

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woo-Kie Min or Un-Kyung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, J.W., Cho, CH., Min, WK. et al. Associations between matrilin-1 gene polymorphisms and adolescent idiopathic scoliosis curve patterns in a Korean population. Mol Biol Rep 39, 5561–5567 (2012). https://doi.org/10.1007/s11033-011-1360-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1360-7

Keywords

Navigation