Skip to main content
Log in

Heat stress activates ER stress signals which suppress the heat shock response, an effect occurring preferentially in the cortex in rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Although heat stress induces a variety of illnesses, there have been few studies designed to uncover the molecular mechanisms underlining the illnesses. We here demonstrate that heat activates ER stress, which inhibits heat shock responses (HSR) via translational block. In heat-stressed rats, ER stress responses, as represented by eIF2α phosphorylation and XBP1 splicing, occurred mainly in the cortex, where the HSR was substantially inhibited. Heat exposure also activated ER stress signals in primary cortical neurons. Since HSF1 knockdown enhanced heat-induced ER stress and subsequent cell death, HSR inhibition in turn augments ER stress, implying a vicious spiral of both stresses. Taken together, heat-induced ER stress impairs the HSR and enhances cell damage, thereby manifesting its unique effect on heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

XBP1:

X-box binding protein

MEF:

Mouse embryonic fibroblast

ER:

Endoplasmic reticulum

HSF1:

Heat shock transcription factor

eIF2:

Eukaryote initiation factor 2

References

  1. Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22:1427–1438

    Article  PubMed  CAS  Google Scholar 

  2. McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528

    Article  PubMed  CAS  Google Scholar 

  3. Luft JC, Benjamin IJ, Mestril R, Dix DJ (2001) Heat shock factor 1-mediated thermotolerance prevents cell death and results in G2/M cell cycle arrest. Cell Stress Chaperones 6:326–336

    Article  PubMed  CAS  Google Scholar 

  4. Zhang Y, Huang L, Zhang J, Moskophidis D, Mivechi NF (2002) Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem 86:376–393

    Article  PubMed  CAS  Google Scholar 

  5. Kostova Z, Wolf DH (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 22:2309–2317

    Article  PubMed  CAS  Google Scholar 

  6. Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772

    Article  PubMed  CAS  Google Scholar 

  7. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529

    Article  PubMed  CAS  Google Scholar 

  8. Doerrler WT, Lehrman MA (1999) Regulation of the dolichol pathway in human fibroblasts by the endoplasmic reticulum unfolded protein response. Proc Natl Acad Sci USA 96:13050–13055

    Article  PubMed  CAS  Google Scholar 

  9. Li WW, Alexandre S, Cao X, Lee AS (1993) Transactivation of the grp78 promoter by Ca2+ depletion. A comparative analysis with A23187 and the endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin. J Biol Chem 268:12003–12009

    PubMed  CAS  Google Scholar 

  10. Wooden SK, Li LJ, Navarro D, Qadri I, Pereira L, Lee AS (1991) Transactivation of the grp78 promoter by malfolded proteins, glycosylation block, and calcium ionophore is mediated through a proximal region containing a CCAAT motif which interacts with CTF/NF-I. Mol Cell Biol 11:5612–5623

    PubMed  CAS  Google Scholar 

  11. Adachi M, Liu Y, Fujii K, Calderwood SK, Nakai A, Imai K, Shinomura Y (2009) Oxidative stress impairs the heat stress response and delays unfolded protein recovery. PLoS One 4:e7719 (1–10)

    Google Scholar 

  12. Dietrich WD, Busto R, Valdes I, Loor Y (1990) Effects of normothermic versus mild hyperthermic forebrain ischemia in rats. Stroke 21:1318–1325

    Article  PubMed  CAS  Google Scholar 

  13. Sinigaglia-Coimbra R, Cavalheiro EA, Coimbra CG (2002) Postischemic hyperthermia induces Alzheimer-like pathology in the rat brain. Acta Neuropathol 103:444–452

    Article  PubMed  CAS  Google Scholar 

  14. Arumugam TV, Phillips TM, Cheng A, Morrell CH, Mattson MP, Wan R (2010) Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann Neurol 67:41–52

    Article  PubMed  CAS  Google Scholar 

  15. Tateno M, Ukai W, Hashimoto E, Ikeda H, Saito T (2006) Implication of increased NRSF/REST binding activity in the mechanism of ethanol inhibition of neuronal differentiation. J Neural Transm 113:283–293

    Article  PubMed  CAS  Google Scholar 

  16. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  PubMed  CAS  Google Scholar 

  17. Mohr I, Gluzman Y (1996) A herpesvirus genetic element which affects translation in the absence of the viral GADD34 function. EMBO J 15:4759–4766

    PubMed  CAS  Google Scholar 

  18. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389

    Article  PubMed  CAS  Google Scholar 

  19. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332:462–464

    Article  PubMed  CAS  Google Scholar 

  20. Morris JA, Dorner AJ, Edwards CA, Hendershot LM, Kaufman RJ (1997) Immunoglobulin binding protein (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the secretion of selective proteins. J Biol Chem 272:4327–4334

    Article  PubMed  CAS  Google Scholar 

  21. Bouchama A, Knochel JP (2002) Heat stroke. N Engl J Med 346:1978–1988

    Article  PubMed  CAS  Google Scholar 

  22. Han AP, Yu C, Lu L, Fujiwara Y, Browne C, Chin G, Fleming M, Leboulch P, Orkin SH, Chen JJ (2001) Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J 20:6909–6918

    Article  PubMed  CAS  Google Scholar 

  23. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5:897–904

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by grants from the Ministry of Education, Culture, Sports, Science, Japan (to M.A, M.H., K.I., Y.S.). We are grateful to Dr. Peter M Olley (Sapporo Medical University School of Medicine) for editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Adachi.

Additional information

Yaohua Liu and Hiroaki Sakamoto contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Sakamoto, H., Adachi, M. et al. Heat stress activates ER stress signals which suppress the heat shock response, an effect occurring preferentially in the cortex in rats. Mol Biol Rep 39, 3987–3993 (2012). https://doi.org/10.1007/s11033-011-1179-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1179-2

Keywords

Navigation