Skip to main content
Log in

Molecular cloning and functional characterization of a putative sulfite oxidase (SO) ortholog from Nicotiana benthamiana

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Sulfite oxidase (SO) catalyzes the oxidation of sulfite to sulfate and thus has important roles in diverse metabolic processes. However, systematic molecular and functional investigations on the putative SO from tobacco (Nicotiana benthamiana) have hitherto not been reported. In this work, a full-length cDNA encoding putative sulfite oxidase from N. benthamiana (NbSO) was isolated. The deduced NbSO protein shares high homology and typical structural features with other species SOs. Phylogenetic analysis indicates that NbSO cDNA clone encodes a tobacco SO isoform. Southern blot analysis suggests that NbSO is a single-copy gene in the N. benthamiana genome. The NbSO transcript levels were higher in aerial tissues and were up-regulated in N. benthamiana during sulfite stress. Reducing the SO expression levels through virus-induced gene silencing caused a substantial accumulation in sulfite content and less sulfate accumulation in N. benthamiana leaves when exposed to sulfite stress, and thus resulted in decreased tolerance to sulfite stress. Taken together, this study improves our understanding on the molecular and functional properties of plant SO and provides genetic evidence on the involvement of SO in sulfite detoxification in a sulfite-oxidizing manner in N. benthamiana plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816

    Article  PubMed  CAS  Google Scholar 

  2. Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91:973–983

    Article  PubMed  CAS  Google Scholar 

  3. Mendel RR, Schwarz G (1999) Molybdoenzymes and molybdenum cofactor in plants. Crit Rev Plant Sci 18:33–69

    Article  CAS  Google Scholar 

  4. Cohen HJ, Fridovich I (1971) Hepatic sulfite oxidase. The nature and function of the heme prosthetic groups. J Biol Chem 246:367–373

    PubMed  CAS  Google Scholar 

  5. Cohen HJ, Fridovich I (1971) Hepatic sulfite oxidase. Purification and properties. J Biol Chem 246:359–366

    PubMed  CAS  Google Scholar 

  6. Kessler DL, Rajagopalan KV (1972) Purification and properties of sulfite oxidase from chicken liver. J Biol Chem 247:6566–6573

    PubMed  CAS  Google Scholar 

  7. Garrett RM, Rajagopalan KV (1994) Molecular cloning of rat liver sulfite oxidase. J Biol Chem 269:272–276

    PubMed  CAS  Google Scholar 

  8. Cohen HJ, Betcher-Lange S, Kessler DL, Rajagopalan KV (1972) Hepatic sulfite oxidase. Congruency in mitochondria of prosthetic groups and activity. J Biol Chem 247:7759–7766

    PubMed  CAS  Google Scholar 

  9. Kisker C, Schindelin H, Rees DC (1997) Molybdenum cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267

    Article  PubMed  CAS  Google Scholar 

  10. Brody MS, Hille R (1999) The kinetic behavior of chicken liver sulfite oxidase. Biochemistry 38:6668–6677

    Article  PubMed  CAS  Google Scholar 

  11. Garrett RM, Johnson JL, Graf TN, Feigenbaum A, Rajagopalan KV (1998) Human sulfite oxidase R160Q: identification of the mutation in a sulfite oxidase-deficient patient and expression and characterization of the mutant enzyme. Proc Natl Acad Sci USA 95:6394–6398

    Article  PubMed  CAS  Google Scholar 

  12. Eilers T, Schwarz G, Brinkmann H, Witt C, Richter T, Nieder J, Koch B, Hille R, Hansch R, Mendel RR (2001) Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase- a new player in plant sulfur metabolism. J Biol Chem 276:46989–46994

    Article  PubMed  CAS  Google Scholar 

  13. Schrader N, Fisher K, Theis K, Mendel RR, Schwarz G, Kisker C (2003) The crystal structure of plant sulfite oxidase provides insights into sulfite oxidation in plants and animals. Structure 11:1251–1263

    Article  PubMed  CAS  Google Scholar 

  14. Hansch R, Lang C, Riebeseel E, Lindigkeit R, Gessler A, Rennenberg H, Mendel RR (2006) Plant sulfite oxidase as novel producer of H2O2: combination of enzyme catalysis with a subsequent non-enzymatic reaction step. J Biol Chem 281:6884–6888

    Article  PubMed  Google Scholar 

  15. Byrne RS, Hänsch R, Mendel RR, Hille R (2009) Oxidative half-reaction of Arabidopsis thaliana sulfite oxidase: generation of superoxide by a peroxisomal enzyme. J Biol Chem 284:35479–35484

    Article  PubMed  CAS  Google Scholar 

  16. Nowak K, Luniak N, Witt C, Wustefeld Y, Wachter A, Mendel RR, Hansch R (2004) Peroxisomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation. Plant Cell Physiol 45:1889–1894

    Article  PubMed  CAS  Google Scholar 

  17. Brychkova G, Xia Z, Yang G, Yesbergenova Z, Zhang Z, Davydov O, Fluhr R, Sagi M (2007) Sulfite oxidase protects plants against sulfur dioxide toxicity. Plant J 50:696–709

    Article  PubMed  CAS  Google Scholar 

  18. Lang C, Popko J, Wirtz M, Hell R, Herschbach C, Kreuzwieser J, Rennenberg H, Mendel RR, Hansch R (2007) Sulphite oxidase as key enzyme for protecting plants against sulphur dioxide. Plant Cell Environ 30:447–455

    Article  PubMed  CAS  Google Scholar 

  19. Goodin MM, Zaitlin D, Naidu RA, Lommel SA (2008) Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol Plant Microbe Interact 21:1015–1026

    Article  PubMed  CAS  Google Scholar 

  20. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  21. Asai S, Ohta K, Yoshioka H (2008) MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. Plant Cell 20:1390–1406

    Article  PubMed  CAS  Google Scholar 

  22. Constantin GD, Krath BN, MacFarlane SA, Nicolaisen M, Johansen IE, Lund OS (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40:622–631

    Article  PubMed  CAS  Google Scholar 

  23. Qian W, Yu C, Qian H, Liu X, Zhang A, Johansen IE, Wang D (2007) Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49:399–413

    Article  PubMed  CAS  Google Scholar 

  24. Liu Y, Nakayama N, Schiff M, Litt A, Irish VF, Dinesh-Kumar SP (2004) Virus induced gene silencing of a DEFICIENS ortholog in Nicotiana benthamiana. Plant Mol Biol 54:701–711

    Article  PubMed  CAS  Google Scholar 

  25. MacFarlane SA, Popovich AH (2000) Efficient expression of foreign proteins in roots from tobravirus vectors. Virology 267:29–35

    Article  PubMed  CAS  Google Scholar 

  26. Nakamura T, Meyer C, Sano H (2002) Molecular cloning and characterization of plant genes encoding novel peroxisomal molybdoenzymes of the sulphite oxidase family. J Exp Bot 53:1833–1836

    Article  PubMed  CAS  Google Scholar 

  27. Hansch R, Lang C, Rennenberg H, Mendel RR (2007) Significance of plant sulfite oxidase. Plant Biol (Stuttg) 9:589–595

    Article  CAS  Google Scholar 

  28. Lindboet JA, Fitzmaurice WP, della-Cioppa G (2001) Virus mediated reprogramming of gene expression in plants. Curr Opin Plant Biol 4:181–185

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (30971548) and The Key Project of Science and Technology of Henan Tobacco Company (HYKJ201010). The authors thank Dr Daowen Wang (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China) for generously providing the PEBV-based pCAPE vector system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongliang Xia.

Additional information

Zongliang Xia and Xinhong Su contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2011_993_MOESM1_ESM.pdf

Fig. 1 Sequence alignment and phylogenetic analysis of sulfite oxidase (SO) from N. benthamiana and other species (A) An alignment is shown for the deduced amino acid sequence of SO from Nicotiana benthamiana (NbSO), Lycopersicon esculentum (LeSO), Solanum tuberosum (StSO), Arabidopsis thaliana (AtSO), Oryza sativa (OsSO), and Zea Mays (ZmSO). The numbers on the left indicate the amino acid position. Identical residues in all these proteins are shown in a black background. Dashes indicated gaps introduced for optimal alignment. The putative molybdopterin-binding domain and dimerization domain are underlined with a solid line and a dashed line, respectively. The boxed regions mark the predicted signal peptide. (B) Phylogenetic tree based on SO protein sequences from bacterial, plants, and animals. The bootstrap values shown were calculated based on 500 replications. The tree was constructed using the neighbor-joining method. NbSO, Nicotiana benthamiana (HQ699883); LeSO, Lycopersicon esculentum (DQ853413); StSO, Solanum tuberosum (DQ284487); AtSO, Arabidopsis thaliana (At3g01910); BoSO, Brassica oleracea (AC183495); OsSO, Oryza sativa (Os08g0530400); ZmSO, Zea Mays (FJ436404); PtSO, Populus trichocarpa (XP_002300104); HcSO, Hibiscus cannabinus (ACU33027); DmSO, Drosophila melanogaster (NM_133103); CeSO, Caenorhabditis elegans (NM_001029564); GgSO, Gallus gallus (P07850); HsSO, Homo sapiens (NM_000456); MmSO, Mus musculus (NM_173733); RnSO, Rattus norvegicus (NM_031127); EcSO, Escherichia coli (NP_288430). Fig. 2 Southern blot analysis of NbSO The genomic DNA samples from N. benthamiana were digested separately with either EcoRI, XbaI or BamHI. The hybridization bands are indicated by arrows. DNA size markers (HindIII digest of lambda DNA) are shown on the right. The results shown are typical of three independent hybridizations. (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Z., Su, X., Wu, J. et al. Molecular cloning and functional characterization of a putative sulfite oxidase (SO) ortholog from Nicotiana benthamiana . Mol Biol Rep 39, 2429–2437 (2012). https://doi.org/10.1007/s11033-011-0993-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0993-x

Keywords

Navigation