Skip to main content
Log in

Transcriptomic analysis of the housefly (Musca domestica) larva using massively parallel pyrosequencing

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To explore the transcriptome of Musca domestica larvae and to identify unique sequences, we used massively parallel pyrosequencing on the Roche 454-FLX platform to generate a substantial EST dataset of this fly. As a result, we obtained a total of 249,555 ESTs with an average read length of 373 bp. These reads were assembled into 13,206 contigs and 20,556 singletons. Using BlastX searches of the Swissprot and Nr databases, we were able to identify 4,814 contigs and 8,166 singletons as unique sequences. Subsequently, the annotated sequences were subjected to GO analysis and the search results showed a majority of the query sequences were assignable to certain gene ontology terms. In addition, functional classification and pathway assignment were performed by KEGG and 2,164 unique sequences were mapped into 184 KEGG pathways in total. As the first attempt on large-scale RNA sequencing of M. domestica, this general picture of the transcriptome can establish a fundamental resource for further research on functional genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Malik A, Singh N, Satya S (2007) House fly (Musca domestica): a review of control strategies for a challenging pest. J Environ Sci Heal B 42(4):453–469

    Article  CAS  Google Scholar 

  2. Izumi N, Yanagibori R, Shigeno S, Sajiki J (2008) Effects of bisphenol A on the development, growth, and sex ratio of the housefly Musca domestica. Environ Toxicol Chem 27(6):1343–1353

    Article  PubMed  CAS  Google Scholar 

  3. Krafsur ES, Moon RD, Kim Y, Rosales AL (1999) Dynamics of diapause recruitment in populations of the face fly, Musca autumnalis. Med Vet Entomol 13(4):337–348

    Article  PubMed  CAS  Google Scholar 

  4. Burghardt G, Hediger M, Siegenthaler C, Moser M, Dübendorfer A, Bopp D (2005) The transformer gene in Musca domestica is required for selecting and maintaining the female pathway of development. Dev Genes Evol 215(4):165–176

    Article  PubMed  CAS  Google Scholar 

  5. Bayne AC, Sohal RS (2002) Effects of superoxide dismutase/catalase mimetics on life span and oxidative stress resistance in the housefly, Musca domestica. Free Radic Biol Med 32(11):1229–1234

    Article  PubMed  CAS  Google Scholar 

  6. Lu XM, Jin XB, Zhu JY, Mei HF, Ma Y, Chu FJ, Wang Y, Li XB (2010) Expression of the antimicrobial peptide cecropin fused with human lysozyme in Escherichia coli. Appl Microbiol Biotechnol 87(6):2169–2176

    Article  PubMed  CAS  Google Scholar 

  7. Ren Q, Zhao X, Wang J (2009) Molecular characterization and expression analysis of a chicken-type lysozyme gene from housefly (Musca domestica). J Genet Genomics 36(1):7–16

    Article  PubMed  Google Scholar 

  8. Li DX, Kang CJ, Zhang W, Wang JX, Zhao XF (2010) Construction of a suppression subtractive hybridization cDNA library to identify differentially expressed genes from Musca domestica (Diptera: Muscidae) larvae. Acta Entomol Sin 53(6):601–610

    CAS  Google Scholar 

  9. Bouck A, Vision T (2007) The molecular ecologist’s guide to expressed sequence tags. Mol Ecol 16(5):907–924

    Article  PubMed  CAS  Google Scholar 

  10. Andersen JR, Lubberstedt T (2003) Functional markers in plants. Trends Plant Sci 8(11):554–560

    Article  PubMed  CAS  Google Scholar 

  11. Emrich SJ, Barbazuk WB, Li L, Schnable PS (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17:69–73

    Article  PubMed  CAS  Google Scholar 

  12. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH (2008) Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol Ecol 17(7):1636–1647

    Article  PubMed  CAS  Google Scholar 

  13. Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51(5):910–918

    Article  PubMed  CAS  Google Scholar 

  14. Novaes E, Drost DR, Farmerie WG, Pappas GJ Jr, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312–325

    Article  PubMed  Google Scholar 

  15. Namroud MC, Beaulieu J, Juge N, Laroche J, Bousquet J (2008) Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol Ecol 17(16):3599–3613

    Article  PubMed  CAS  Google Scholar 

  16. Isler JA, Vesterqvist OE, Burczynski ME (2007) Analytical validation of genotyping assays in the biomarker laboratory. Pharmacogenomics 8:353–368

    Article  PubMed  CAS  Google Scholar 

  17. Zou Z, Najar F, Wang Y, Roe B, Jiang H (2008) Pyrosequence analysis of expressed sequence tags for Manduca sexta hemolymph proteins involved in immune responses. Insect Biochem Mol Biol 38(6):677–682

    Article  PubMed  CAS  Google Scholar 

  18. Kristiansson E, Asker N, Forlin L, Larsson DGJ (2009) Characterization of the Zoarces viviparus liver transcriptome using massively parallel pyrosequencing. BMC Genomics 10:345

    Article  PubMed  Google Scholar 

  19. Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180–195

    Article  PubMed  Google Scholar 

  20. Wheat CW (2008) Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica 138(4):433–451

    Article  PubMed  Google Scholar 

  21. Codd V, Dolezel D, Stehlik J, Piccin A, Garner KJ, Racey SN, Straatman KR, Louis EJ, Costa R, Sauman I, Kyriacou CP, Rosato E (2007) Circadian rhythm gene regulation in the housefly Musca domestica. Genetics 177(3):1539–1551

    Article  PubMed  CAS  Google Scholar 

  22. Sackton TB, Lazzaro BP, Clark AG (2010) Genotype and gene expression associations with immune function in Drosophila. PLos Genet 6(1):e1000797

    Article  PubMed  Google Scholar 

  23. Hahn DA, Ragland GJ, Shoemaker DD, Denlinger DL (2009) Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis. BMC Genomics 10:234–242

    Article  PubMed  Google Scholar 

  24. Kim T, Kim YJ (2005) Overview of innate immunity in Drosophila. J Biochem Mol Biol 38:121–127

    Article  PubMed  CAS  Google Scholar 

  25. Hoffmann JA (2003) The immune response of Drosophila. Nature 426:33–38

    Article  PubMed  CAS  Google Scholar 

  26. Kaneko T, Yano T, Aggarwal K, Lim JH, Ueda K, Oshima Y, Peach C, Erturk-Hasdemir D, Goldman WE, Oh BH, Kurata S, Silverman N (2006) PGRP-LC and PGRP-LE have essential yet distinct functions in the drosophila immune response to monomeric DAP-type peptidoglycan. Nat Immunol 7:715–723

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20101301120005), the Natural Science Fund of Hebei Province (No. C2011201027), and the Natural Science Fund of Hebei University (No. 2010001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengsong Liu.

Additional information

F. Liu and T. Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Tang, T., Sun, L. et al. Transcriptomic analysis of the housefly (Musca domestica) larva using massively parallel pyrosequencing. Mol Biol Rep 39, 1927–1934 (2012). https://doi.org/10.1007/s11033-011-0939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0939-3

Keywords

Navigation