Skip to main content

Advertisement

Log in

Selection of reference genes for quantitative real-time RT-PCR analysis in citrus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Quantitative real-time reverse transcription polymerase chain reaction (qPCR) has become the preferred method for studying low-abundant mRNA expression. Appropriate application of qPCR in such studies requires the use of reference gene(s) as an internal control in order to normalize the mRNA levels between different samples for an exact comparison of gene expression levels. Expression of the reference gene should be independent from development stage, cell/tissue types, treatments and environmental conditions. Recognizing the importance of reference gene(s) in normalization of qPCR data, various reference genes have been evaluated for stable expression under specific conditions in various organisms. In plants, only a few of them have been investigated, and very few reports about such reference genes in citrus. In the present study, seven candidate reference genes (18SrRNA, ACTB, rpII, UBQI, UBQ10, GAPDH and TUB) were tested, and three of them (18SrRNA, ACTB and rpII) proved to be the most stable ones among six leaf samples of different citrus genotypes. The three candidate reference genes were further analyzed for their stability of expression in five different tissues, and the results indicated that they were not completely stable. It is commonly accepted that gene expression studies should be normalized using more than one reference gene. Based on our results, we propose the use of the mean result rendered by18SrRNA, ACTB and rpII as reference genes to normalize mRNA levels in qPCR analysis of diverse cultivars and tissues of citrus. These results may provide a guideline for future works on gene expression in citrus by using qPCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real time RT-PCR—a perspective. J Mol Endocrinol 34:597–601

    PubMed  CAS  Google Scholar 

  2. Gachon C, Mingam A, Charrier B (2004) Real-time PCR: What relevance to plant studies? J Exp Bot 55(402):1445–1454

    PubMed  CAS  Google Scholar 

  3. Bustin SA (2005) Real-time, fluorescence-based quantitative PCR: a snapshot of current procedures and preferences. Expert Rev Mol Diagn 5(4):493–498

    PubMed  CAS  Google Scholar 

  4. Bustin SA, Nolan T (2004) Pitfalls of quantitative real-time reverse transcription polymerase chain reaction. J Biomol Tech 15(3):155–166

    PubMed  Google Scholar 

  5. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    PubMed  CAS  Google Scholar 

  6. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    PubMed  CAS  Google Scholar 

  7. Von SD, Leverkoehne I, Von Samson-Himmelstjerna G, Gruber AD (2005) Impact of formalin-fixation and paraffin-embedding on the ratio between mRNA copy numbers of differently expressed genes. Histochem Cell Biol 124(2):177–188

    Google Scholar 

  8. Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    PubMed  CAS  Google Scholar 

  9. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29(2):332–337

    PubMed  CAS  Google Scholar 

  10. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR by geometric averaging of multiple internal control genes. Genome Biol 3(7):34

    Google Scholar 

  11. Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Bustin SA, Orlando C (2002) Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Anal Biochem 309(2):293–300

    PubMed  CAS  Google Scholar 

  12. Perez S, Royo L, Astudillo A, Escudero D, Alvarez F, Rodriguez A, Gomez E, Otero J (2007) Identifying the most suitable endogenous control for determining gene expression in hearts from organ donors. BMC Mol Biol 8(1):114

    PubMed  Google Scholar 

  13. Yang YF, Hou S, Cui GH, Chen SL, Wei JH, Huang LQ (2010) Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza. Mol Biol Rep 37:507–513

    PubMed  CAS  Google Scholar 

  14. Jiang HB, Liu YH, Tang PA, Zhou AW, Wang JJ (2010) Validation of endogenous reference genes for insecticide-induced and developmental expression profiling of Liposcelis bostsrychophila (Psocoptera: Liposcelididae). Mol Biol Rep 37:1019–1029

    PubMed  CAS  Google Scholar 

  15. Peng H, Cheng HY, Yu XW, Shi QH, Zhang H, Li JH, Ma H (2010) Molecular analysis of an actin gene, CarACT1, from chickpea (Cicer arietinum L.). Mol Biol Rep 37:1081–1088

    PubMed  CAS  Google Scholar 

  16. Wu WJ, Ren ZQ, Wang Y, Chao Zh, Xu EQ, Xiong YZ (2010) Molecular characterization, expression patterns and polymorphism analysis of porcine Six1 gene. Mol Biol Rep. doi:10.1007/s11033-010-0403-9

  17. Li GL, Roy B, Li XH, Yue WF, Wu XF, Liu JM, Zhang CX, Miao YG (2009) Quantification of silkworm coactivator of MBF1 mRNA by SYBR Green I real-time RT-PCR reveals tissue- and stage-specific transcription levels. Mol Biol Rep 36:1217–1223

    PubMed  CAS  Google Scholar 

  18. Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time quantitative RT-PCR. J Biochem Biophys Methods 46(1–2):69–81

    PubMed  CAS  Google Scholar 

  19. Foss DL, Baarsch MJ, Murtaugh MP (1998) Regulation of hypoxanthine phosphor ribosyl transferase, glyceraldehyde-3-phosphate dehydrogenase and beta-actin mRNA expression in porcine immune cells and tissues. Anim Biotechnol 9(1):67–78

    PubMed  CAS  Google Scholar 

  20. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75(2–3):291–295

    PubMed  CAS  Google Scholar 

  21. Lee PD, Sladek R, Greenwood CM, Hudson TJ (2002) Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res 12(2):292–297

    PubMed  Google Scholar 

  22. Tomasz C, Mark S, Thomas A, Udvardi MK, Scheible W-R (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis1[w]. Plant Physiol 139:5–17

    Google Scholar 

  23. Aoki T, Naka H, Katagiri T, Hirono I (2000) Cloning and characterization of glyceraldehyde-3-phosphate dehydrogenase cDNA of Japanese flounder Paralichthys olivaceus. Fish Sci 66:737–742

    CAS  Google Scholar 

  24. Olsvik PA, Lie KK, Jordal AEO, Nilsen TO, Hordvik I (2005) Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol Biol 6:21

    PubMed  Google Scholar 

  25. Zhang Z, Hu J (2007) Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative real-time RT-PCR. Toxicol Sci 95(2):356–368

    PubMed  CAS  Google Scholar 

  26. Huggett J, Dheda K, Bustin SA, Zumla A (2005) Real-time RT-PCR normalization: strategies and considerations. Genes Immun 6(4):279–284

    PubMed  CAS  Google Scholar 

  27. Ohl F, Jung M, Radonic A, Sachs M, Loening SA, Jung K (2006) Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer. J Urol 175(5):1915–1920

    PubMed  CAS  Google Scholar 

  28. Dheda K, Huggett J, Chang J, Kim L, Bustin S, Johnson M, Rook G, Zumla A (2005) The implications of using an inappropriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem 344:141–143

    PubMed  CAS  Google Scholar 

  29. Sturzenbaum SR, Kille P (2001) Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol B Biochem Mol Biol 130(3):281–289

    PubMed  CAS  Google Scholar 

  30. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative realtime PCR. Biochem Biophys Res Commun 313(4):856–862

    PubMed  CAS  Google Scholar 

  31. Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14

    PubMed  Google Scholar 

  32. Nathalie N, Jean FH, Lucien H, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56(421):2907–2914

    Google Scholar 

  33. Ding J, Jia J, Yang L, Wen H, Zhang C, Liu W, Zhang D (2004) Validation of a rice specific gene, sucrose phosphate synthase, used as the endogenous reference gene for qualitative and real-time quantitative PCR detection of transgenes. J Agric Food Chem 52(11):3372–3377

    PubMed  CAS  Google Scholar 

  34. Kim BR, Nam HY, Kim SU, Kim SI, Chang YJ (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25(21):1869–1872

    PubMed  CAS  Google Scholar 

  35. Gunnhild WT, Ian KT, May BB (2007) Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biol 7:50

    Google Scholar 

  36. Jian B, Liu B, Bi Y, Hou W, Wu C, Han T (2008) Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Mol Biol 9(1):59

    PubMed  Google Scholar 

  37. Libault M, Thibivilliers S, Bilgin D, Radwan O, Benitez M, Clough S, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome 1:44–54

    CAS  Google Scholar 

  38. Tong ZG, Gao ZH, Wang F, Zhou J, Zhang Z (2009) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71

    PubMed  Google Scholar 

  39. Carla FB, Fábio ES, Mirian PM, Ivan GM (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1

    Google Scholar 

  40. Hayati MI, Robert SS, Rosanne EC, Graham DB, Donald JM, John MM (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Report 22:325–337

    Google Scholar 

  41. Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    PubMed  Google Scholar 

  42. Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:27

    PubMed  Google Scholar 

  43. Gonzalez-Verdejo CI, Die JV, Nadal S, Jimenez-Marin A, Moreno MT, Roman B (2008) Selection of housekeeping genes for normalization by real-time RTPCR: analysis of Or-MYB1 gene expression in Orobanche ramose development. Anal Biochem 379(2):176–181

    PubMed  CAS  Google Scholar 

  44. Dong LM, Sui C, Liu YJ, Yang Y, Wei JH, Yang YF (2010) Validation and application of reference genes for quantitative gene expression analyses in various tissues of Bupleurum chinense. Mol Biol Rep. doi:10.1007/s11033-010-0648-3

  45. Hong S-Y, Seo PJ, Yang M-S, Xiang F, Park C-M (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8:112

    PubMed  Google Scholar 

  46. Mallona I, Lischewski S, Weiss J, Hause B, Egea-Cortines M (2010) Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida. BMC Plant Biol 10:4

    PubMed  Google Scholar 

  47. Maroufi A, Van Bockstaele E, De Loose M (2010) Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time. PCR BMC Mol Biol 11:15

    Google Scholar 

  48. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    PubMed  CAS  Google Scholar 

  49. Mason MG, Schmidt S (2002) Rapid isolation of total RNA and genomic DNA from Hakea actities. Funct Plant Biol 29:1013–1016

    CAS  Google Scholar 

  50. Rasmussen R, Meuer S, Wittwer C, Nakagawara K (eds) (2001) Quantification on the LightCycler. In: Rapid cycle real-time PCR, methods and applications. Springer, Berlin, pp 21–34

  51. BestKeeper Software. http://www.gene-quantification.de/bestkeeper.html. (Ref. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515)

    Google Scholar 

  52. geNorm Software. http://medgen.ugent.be/~jvdesomp/genorm/. (Ref. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR by geometric averaging of multiple internal control genes. Genome Biol 3(7):34)

    Google Scholar 

  53. Barrett HC, Rhodes AM (1976) A numerical taxonomic study of affinity relationships in cultivated citrus and its close relatives. Syst Bot 1:105–136

    Google Scholar 

  54. Nicolosi E, Deng ZN, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    CAS  Google Scholar 

  55. Deng ZN, La Malfa S, Xie YM, Xiong XY, Gentile A (2007) Identification and evaluation of chloroplast uni- and trinucleotide sequence repeats in citrus. Hortic Sci 111:186–192

    CAS  Google Scholar 

  56. Spiegel-Roy P, Goldschmidt EE (1996) Biology of citrus. Cambridge University Press, Cambridge, p 230

    Google Scholar 

  57. Steinau M, Rajeevan MS, Unger ER (2006) DNA and RNA references for qRT-PCR assays in exfoliated cervical cells. J Mol Diagn 8:113–118

    PubMed  CAS  Google Scholar 

  58. Ohl F, Jung M, Xu C, Stephan C, Rabien A, Burkhardt M, Nitsche A, Kristiansen G, Loening SA, Radonic A, Jung K (2005) Gene expression studies in prostate cancer tissue: which reference gene should be selected for normalization? J Mol Med 83(12):1014–1024

    PubMed  CAS  Google Scholar 

  59. Silver N, Best S, Jiang J, Thein SL (2006) Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time. PCR BMC Mol Biol 7:33

    Google Scholar 

  60. Claus LA, Jens LJ, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Google Scholar 

  61. Duncan A, Dylan NC, Fiona S, Philip JR (2007) Expression stability of commonly used reference genes in canine articular connective tissues. BMC Vet Res 3:7

    Google Scholar 

  62. Hellemans J, Mortier G, Paepe AD, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank A.P. Xiaojun Wang for assistance in data analysis and the Center of Analytical Service of Hunan Agricultural University for devices support. This work was supported by the National Natural Science Foundation of China (30871702) and the China Modern Agricultural Research System (CARS-27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziniu Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Yuan, F., Long, G. et al. Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol Biol Rep 39, 1831–1838 (2012). https://doi.org/10.1007/s11033-011-0925-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0925-9

Keywords

Navigation