Skip to main content
Log in

An upstream regulatory element confers orientation-independent enhancement of the TSG101 promoter activity in transformed cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Tumor susceptibility gene 101 (TSG101), a mammalian homologue of yeast vps23, is involved in protein sorting, vesicular trafficking and maintenance of genomic integrity. Upregulation of the TSG101 gene was found in human thyroid papillary and breast tumors. Here, we define the proximal promoter of human TSG101 at −1 to −436 by reporter assay. Intact Sp1 and MAZ binding sequences within this region are essential, and mutation of both sites eliminates proximal promoter activity implying cooperation between these two cis-elements. Chromatin immunoprecipitation and DNA affinity precipitation assay confirmed in vivo Sp1 binding on the GGGGCGGGTT sequence. MAZ protein was essential for TSG101 promoter activity because its knockdown using siRNA decreased reporter activity. An upstream regulatory element (URE) at the −1280 to −1757 region was identified to confer the orientation-independent enhancement of the promoter activity in transformed COS-1, ARO and WRO cell lines but not in a normal thyroid FRTL cell line. The sequence of this URE region contains putative binding sites for thyroid transcription factor 2 (TTF-2) and thyroid hormone receptor (T3R), which might be relevant to differential regulation of TSG101 promoter activity in transformed and primary cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Babst M, Odorizzi G, Estepa EJ et al (2000) Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, vps23p, both function in late endosomal trafficking. Traffic 1:248–258

    Article  PubMed  CAS  Google Scholar 

  2. Bishop N, Woodman P (2001) TSG101/mammalian vps23 and mammalian vps28 interact directly and are recruited to vps4-induced endosomes. J Biol Chem 276:11735–11742

    Article  PubMed  CAS  Google Scholar 

  3. Lu Q, Hope LW, Brasch M et al (2003) TSG101 interaction with hrs mediates endosomal trafficking and receptor down-regulation. Proc Natl Acad Sci USA 100:7626–7631

    Article  PubMed  CAS  Google Scholar 

  4. Vardhana S, Choudhuri K, Varma R et al (2010) Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity 32:531–540

    Article  PubMed  CAS  Google Scholar 

  5. Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277

    Article  PubMed  CAS  Google Scholar 

  6. Watanabe M, Yanagi Y, Masuhiro Y et al (1998) A putative tumor suppressor, TSG101, acts as a transcriptional suppressor through its coiled-coil domain. Biochem Biophys Res Commun 245:900–905

    Article  PubMed  CAS  Google Scholar 

  7. Burgdorf S, Leister P, Scheidtmann KH (2004) TSG101 interacts with apoptosis-antagonizing transcription factor and enhances androgen receptor-mediated transcription by promoting its monoubiquitination. J Biol Chem 279:17524–17534

    Article  PubMed  CAS  Google Scholar 

  8. Ruland J, Sirard C, Elia A et al (2001) P53 accumulation, defective cell proliferation, and early embryonic lethality in mice lacking TSG101. Proc Natl Acad Sci USA 98:1859–1864

    Article  PubMed  CAS  Google Scholar 

  9. Wagner KU, Krempler A, Qi Y et al (2003) TSG101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues. Mol Cell Biol 23:150–162

    Article  PubMed  CAS  Google Scholar 

  10. Moberg KH, Schelble S, Burdick SK et al (2005) Mutations in erupted, the drosophila ortholog of mammalian tumor susceptibility gene 101, elicit non-cell-autonomous overgrowth. Dev Cell 9:699–710

    Article  PubMed  CAS  Google Scholar 

  11. Xie W, Li L, Cohen SN (1998) Cell cycle-dependent subcellular localization of the TSG101 protein and mitotic and nuclear abnormalities associated with TSG101 deficiency. Proc Natl Acad Sci USA 95:1595–1600

    Article  PubMed  CAS  Google Scholar 

  12. Yanagida-Ishizaki Y, Takei T, Ishizaki R et al (2008) Recruitment of TOM1L1/SRCASM to endosomes and the midbody by TSG101. Cell Struct Funct 33:91–100

    Article  PubMed  CAS  Google Scholar 

  13. Li L, Cohen SN (1996) TSG101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85:319–329

    Article  PubMed  CAS  Google Scholar 

  14. Lee MP, Feinberg AP (1997) Aberrant splicing but not mutations of TSG101 in human breast cancer. Cancer Res 57:3131–3134

    PubMed  CAS  Google Scholar 

  15. Carney ME, Maxwell GL, Lancaster JM et al (1998) Aberrant splicing of the TSG101 tumor suppressor gene in human breast and ovarian cancers. J Soc Gynecol Investig 5:281–285

    Article  PubMed  CAS  Google Scholar 

  16. Oh Y, Proctor ML, Fan YH et al (1998) TSG101 is not mutated in lung cancer but a shortened transcript is frequently expressed in small cell lung cancer. Oncogene 17:1141–1148

    Article  PubMed  CAS  Google Scholar 

  17. Trink B, Pai SI, Spunt SL et al (1998) Absence of TSG101 transcript abnormalities in human cancers. Oncogene 16:2815–2818

    Article  PubMed  CAS  Google Scholar 

  18. Liu RT, Huang CC, You HL et al (2002) Overexpression of tumor susceptibility gene TSG101 in human papillary thyroid carcinomas. Oncogene 21:4830–4837

    Article  PubMed  CAS  Google Scholar 

  19. Zhu G, Reynolds L, Crnogorac-Jurcevic T et al (2003) Combination of microdissection and microarray analysis to identify gene expression changes between differentially located tumour cells in breast cancer. Oncogene 22:3742–3748

    Article  PubMed  CAS  Google Scholar 

  20. Oh KB, Stanton MJ, West WW et al (2007) TSG101 is upregulated in a subset of invasive human breast cancers and its targeted overexpression in transgenic mice reveals weak oncogenic properties for mammary cancer initiation. Oncogene 26:5950–5959

    Article  PubMed  CAS  Google Scholar 

  21. Ma XR, Edmund Sim UH, Pauline B et al (2008) Overexpression of WNT2 and TSG101 genes in colorectal carcinoma. Trop Biomed 25:46–57

    PubMed  CAS  Google Scholar 

  22. Wagner KU, Dierisseau P, Rucker EB III et al (1998) Genomic architecture and transcriptional activation of the mouse and human tumor susceptibility gene TSG101: common types of shorter transcripts are true alternative splice variants. Oncogene 17:2761–2770

    Article  PubMed  CAS  Google Scholar 

  23. Parks CL, Shenk T (1996) The serotonin 1a receptor gene contains a TATA-less promoter that responds to MAZ and Sp1. J Biol Chem 271:4417–4430

    Article  PubMed  CAS  Google Scholar 

  24. Karantzoulis-Fegaras F, Antoniou H, Lai SL et al (1999) Characterization of the human endothelial nitric-oxide synthase promoter. J Biol Chem 274:3076–3093

    Article  PubMed  CAS  Google Scholar 

  25. Williams LJ, Abou-Samra AB (2000) The transcription factors Sp1 and MAZ regulate expression of the parathyroid hormone/parathyroid hormone-related peptide receptor gene. J Mol Endocrinol 25:309–319

    Article  PubMed  CAS  Google Scholar 

  26. You HL, Eng HL, Hsu SF et al (2007) A PKC-Sp1 signaling pathway induces early differentiation of human keratinocytes through upregulation of TSG101. Cell Signal 19:1201–1211

    Article  PubMed  CAS  Google Scholar 

  27. Ambesi-Impiombato FS, Parks LA, Coon HG (1980) Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci USA 77:3455–3459

    Article  PubMed  CAS  Google Scholar 

  28. Krempler A, Henry MD, Triplett AA et al (2002) Targeted deletion of the TSG101 gene results in cell cycle arrest at G1/S and p53-independent cell death. J Biol Chem 277:43216–43223

    Article  PubMed  CAS  Google Scholar 

  29. Carstens MJ, Krempler A, Triplett AA, et al (2004) Cell cycle arrest and cell death are controlled by p53-dependent and p53-independent mechanisms in TSG101-deficient cells. 279:35984–35994

  30. Eichberger T, Regl G, Ikram MS et al (2004) FOXE1, a new transcriptional target of GLI2 is expressed in human epidermis and basal cell carcinoma. J Invest Dermatol 122:1180–1187

    Article  PubMed  CAS  Google Scholar 

  31. Zhang P, Zuo H, Nakamura Y et al (2006) Immunohistochemical analysis of thyroid-specific transcription factors in thyroid tumors. Pathol Int 56:240–245

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Margaret Dah-Tsyr Chang for kindly providing us with MAZ antiserum and Drs. J.D. Lin and G.J.F. Juillard for the thyroid carcinoma cell lines ARO and WRO. This work was supported by grants from National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Science Council of Republic of China, NSC 95-2320-B-110-009 to J.-T. Cheng, and grant VGHNSU92-05 to Y.-G., Goan and J.-T. Cheng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiin-Tsuey Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, SF., Goan, YG., Tsai, HY. et al. An upstream regulatory element confers orientation-independent enhancement of the TSG101 promoter activity in transformed cells. Mol Biol Rep 39, 517–525 (2012). https://doi.org/10.1007/s11033-011-0766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0766-6

Keywords

Navigation