Skip to main content
Log in

Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

An auxin response factor 2 gene, MiARF2, was cloned in our previous study [1] from the cotyledon section of mango (Mangifera indica L. cv. Zihua) during adventitious root formation, which shares an 84% amino acid sequence similarity to Arabidopsis ARF2. This study was to examine the effects of over-expression of the full-length MiARF2 open reading frame on the root and hypocotyl growth in Arabidopsis. Phenotype analysis showed that the T3 transgenic lines had about 20–30% reduction in the length of hypocotyls and roots of the seedlings in comparison with the wild-type. The transcription levels of ANT and ARGOS genes which play a role in controlling organ size and cell proliferation in the transgenic seedlings also decreased. Therefore, the inhibited root and hypocotyl growth in the transgenic seedlings may be associated with the down-regulated transcription of ANT and ARGOS by the over-expression of MiARF2. This study also suggests that although MiARF2 only has a single DNA-binding domain (DBD), it can function as other ARF-like proteins containing complete DBD, middle region (MR) and carboxy-terminal dimerization domain (CTD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xiao JN, Huang XL, Zhang YS, Li Y, Li XJ (2004) Cloning of cDNA fragments related to adventitious root formation from mango cotyledon section. J Plant Physiol Mol Biol 30:136–140

    CAS  Google Scholar 

  2. Morris DA, Friml J, Zazimalova E (2004) The transport of auxins. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action. Kluwer Academic Publisher, Dordrecht, pp 437–470

    Google Scholar 

  3. Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  PubMed  CAS  Google Scholar 

  4. Leyser O (2002) Molecular genetics of auxin signaling. Annu Rev Plant Biol 53:377–398

    Article  PubMed  CAS  Google Scholar 

  5. Guilfoyle TJ, Ulmasov T, Hagen G (1998) The ARF family of transcription factors and their role in plant hormone responsive transcription. Cell Mol Life Sci 54:619–627

    Article  PubMed  CAS  Google Scholar 

  6. Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  PubMed  CAS  Google Scholar 

  7. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  PubMed  CAS  Google Scholar 

  8. Ulmasov T, Hagen G, Guilfoyle T (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849

    Article  PubMed  CAS  Google Scholar 

  9. Faivre-Rampant O, Cardle L, Marshall D, Viola R, Taylor MA (2004) Changes in gene expression during meristem activation processes in Solanum tuberosum with a focus on the regulation of an auxin response factor gene. J Exp Bot 55:613–622

    Article  PubMed  CAS  Google Scholar 

  10. Saito Y, Yamasaki S, Fujii N, Hagen G, Guilfoyle T, Takahashi H (2004) Isolation of cucumber CsARF cDNAs and expression of the corresponding mRNAs during gravity-regulated morphogenesis of cucumber seedlings. J Exp Bot 55:1315–1323

    Article  PubMed  CAS  Google Scholar 

  11. Waller F, Furuya M, Nick P (2002) OsARF1, an auxin response factor from rice, is auxin-regulated and classifies as a primary auxin responsive gene. Plant Mol Biol 50:415–425

    Article  PubMed  CAS  Google Scholar 

  12. Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latché A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J 32:603–613

    Article  PubMed  CAS  Google Scholar 

  13. Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  PubMed  CAS  Google Scholar 

  14. Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    Article  PubMed  CAS  Google Scholar 

  15. Ulmasov T, Murfett J, Hagen G (1997) Guilfoyle TJ, Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  PubMed  CAS  Google Scholar 

  16. Ulmasov T, Hagen G, Guilfoyle T (1999) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    Article  PubMed  CAS  Google Scholar 

  17. Kim J, Harter K, Theologis A (1997) Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791

    Article  PubMed  CAS  Google Scholar 

  18. Ouellet F, Overvoorde PJ, Theologis A (2001) IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13:829–841

    Article  PubMed  CAS  Google Scholar 

  19. Guilfoyle TJ, Hagen G (2001) Auxin response factors. J Plant Growth Regul 10:281–291

    Article  Google Scholar 

  20. Remington DL, Vision TJ, Guilfoyle TJ, Reed JW (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752

    Article  PubMed  CAS  Google Scholar 

  21. Chen QZ (2007) Function study of mango (Mangifera indica L.) auxin response factor like gene MiARF2 during the adventitious root formation. Doctor’s Degree Paper, China

  22. Tatematsu K, Kumagai S, Muto H, Sato A, Watahiki MK, Harper RM, Liscum E, Yamamoto KT (2004) MASSUGU2 encodes Aux/IAA19, an auxin-regulated protein that functions together with the transcriptional activator NPH4/ARF7 to regulate differential growth responses of hypocotyl and formation of lateral roots. Plant Cell 16:379–393

    Article  PubMed  CAS  Google Scholar 

  23. Tian C, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T, Yamamoto KT (2004) Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J 40:333–343

    Article  PubMed  CAS  Google Scholar 

  24. Schruff MC, Spielman M, Tiwari S, Adams S, Fenby N, Scott RJ (2005) The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 133:251–261

    Article  PubMed  Google Scholar 

  25. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  PubMed  CAS  Google Scholar 

  26. Okushima Y, Mitina I, Quach HL, Theologis A (2005) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43:29–46

    Article  PubMed  CAS  Google Scholar 

  27. Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR (2004) Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204

    Article  PubMed  CAS  Google Scholar 

  28. Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSE FACTOR 1 and AUXIN RESPONSE FACTOR 2 regulate senescence and floral abscission in Arabidopsis thaliana. Development 132:4563–4574

    Article  PubMed  CAS  Google Scholar 

  29. Krizek BA (1999) Ectopic expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of oral organs. Dev Genet 25:224–236

    Article  PubMed  CAS  Google Scholar 

  30. Mizukami Y, Fischer RL (2000) Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc Natl Acad Sci USA 97:942–947

    Article  PubMed  CAS  Google Scholar 

  31. Oakenfull EA, Riou-Khamlichi C, Murray JAH (2002) Plant D-type cyclins and the control of G1 progression. Philos Trans R Soc Lond B 357:749–760

    Article  CAS  Google Scholar 

  32. Hu Y, Xie Q, Chua NH (2003) The Arabidopsis auxin-inducible gene ARGOS controls lateral organ size. Plant Cell 15:1951–1961

    Article  PubMed  CAS  Google Scholar 

  33. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  34. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) A new Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  35. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  36. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  37. Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  38. Leyser HMO, Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M (1993) Arabidopsis auxin resistance gene AXR1 encodes a protein related to ubiquitin activating enzyme E1. Nature 364:161–164

    Article  PubMed  CAS  Google Scholar 

  39. Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373

    Article  PubMed  CAS  Google Scholar 

  40. Collett CE, Harberd NP, Leyser O (2000) Hormonal interactions in the control of Arabidopsis hypocotyl elongation. Plant Physiol 124:553–561

    Article  PubMed  CAS  Google Scholar 

  41. Wei HB, Cui BM, Ren YL, Li JH, Liao WB, Xu NF, Peng M (2006) Research progresses on auxin response factors. J Integr Plant Biol 48:622–627

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Xie Qi for his valuable discussion and the gift of the pBA002 vector. This research was supported by the Natural Science Foundation of China 30470110.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Yong Wu or Xue-Lin Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Li, YH., Wu, JY. et al. Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis . Mol Biol Rep 38, 3189–3194 (2011). https://doi.org/10.1007/s11033-010-9990-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-9990-8

Keywords

Navigation