Skip to main content

Advertisement

Log in

Evaluation of Toll-like receptors 3 (c.1377C/T) and 9 (G2848A) gene polymorphisms in cervical cancer susceptibility

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cervical cancer is emerging as a leading cause of morbidity and mortality in women worldwide. Toll-like Receptor (TLR) gene polymorphisms may contribute to subsequent inter-individual variability in cancer susceptibility. The present study aimed to identify the role of TLR 3 (c.1377C/T) [rs3775290] and TLR 9 (G2848A) [rs352140] gene polymorphisms in the risk of developing cervical cancer in North India. Peripheral blood samples were collected from 200 histopathologically confirmed cervical cancer patients from North India and 200 unrelated, cancer-free, age-matched healthy female controls of similar ethnicity. Genomic DNA was extracted using the salting-out method, and genotyped for TLR 3 and TLR 9 using polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP). Our data demonstrated a lack of association between TLR 3 (c.1377C/T) and TLR 9 (G2848A) gene polymorphisms and the risk of developing cervical cancer. TLR 3 CT + TT was marginally associated (P = 0.061; age-adjusted OR = 1.46; 95% CI = 0.98–2.16) with cervical cancer susceptibility. The AA genotype of TLR 9 showed borderline significance (P = 0.053) conferring a marginal increased risk (OR = 2.63, 95%CI = 0.99–7.01) for advanced cancer stages (III + IV). Further, TLR 3 and 9 polymorphisms did not have a significant role in modulation of risk due to tobacco usage in cervical cancer patients. Our study suggests only marginal role of TLR 3 and 9 gene polymorphisms in cervical cancer susceptibility in North India; however, future studies in ethnically diverse populations may provide a more comprehensive involvement of innate immunity in cervical cancer etiology in women worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vizcaino AP, Moreno V, Bosch FX et al (2000) International trends in incidence of cervical cancer: II. Squamous-cell carcinoma. Int J Cancer 86:429–435. doi:10.1002/(SICI)1097-0215(20000501)86:3<429:AID-IJC20>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  2. Burger RA, Monk BJ, Kurosaki T et al (1996) Human papillomavirus type 18: association with poor prognosis in early stage cervical cancer. J Natl Cancer Inst 88:1361–1368. doi:10.1097/00128360-199707000-00018

    Article  PubMed  CAS  Google Scholar 

  3. Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  PubMed  CAS  Google Scholar 

  4. Schlecht NF, Kulaga S, Robitaille J et al (2001) Persistent human papillomavirus infection as a predictor of cervical intraepithelial neoplasia. JAMA 286:3106–3114. doi:10.1001/jama.286.24.3106

    Article  PubMed  CAS  Google Scholar 

  5. Woodman CB, Collins S, Winter H et al (2001) Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet 357:1831–1836. doi:10.1016/S0140-6736(00)04956-4

    Article  PubMed  CAS  Google Scholar 

  6. Schroder NW, Schumann RR (2005) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 5:156–164. doi:10.1016/S1473-3099(05)01308-3

    PubMed  Google Scholar 

  7. Misch EA, Hawn TR (2008) Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci 114:347–360. doi:10.1042/CS20070214

    Article  PubMed  Google Scholar 

  8. El Omar EM, Ng MT, Hold GI (2008) Polymorphisms in Toll-like receptor genes and risk of cancer. Oncogene 27:244–252. doi:10.1038/sj.onc.1210912

    Article  PubMed  CAS  Google Scholar 

  9. Pandey S, Agrawal DK (2006) Immunobiology of Toll-like receptors: emerging trends. Immunol Cell Biol 84:333–341. doi:10.1111/j.1440-1711.2006.01444.x

    Article  PubMed  CAS  Google Scholar 

  10. Jiang Q, Wei H, Tian Z (2008) Poly I: C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway. BMC Cancer 8:12. doi:10.1186/1471-2407-8-12

    Article  PubMed  Google Scholar 

  11. Kim WY, Lee JW, Choi JJ et al (2008) Increased expression of TLR 5 during progression of cervical neoplasia. Int J Gynecol Cancer 18:300–305

    Article  PubMed  CAS  Google Scholar 

  12. Hasan UA, Bates E, Takeshita F et al (2007) TLR 9 expression and function is abolished by the cervical cancer associated human papillomavirus type 16. J Immunol 178:3186–3197

    PubMed  CAS  Google Scholar 

  13. Lee JW, Choi JJ, Seo ES et al (2007) Increased toll-like receptor 9 expression in cervical neoplasia. Mol Carcinog 46:941–947. doi:10.1002/mc.20325

    Article  PubMed  CAS  Google Scholar 

  14. Pandey S, Mittal RD, Srivastava M et al (2009) Impact of Toll-like receptors [TLR] 2 (−196 to −174 del) and TLR 4 (Asp299Gly, Thr399Ile) in cervical cancer susceptibility in North Indian women. Gynecol Oncol 114:501–505. doi:10.1016/j.ygyno.2009.05.032

    Article  PubMed  CAS  Google Scholar 

  15. Miller SA, Dykes DD, Polesky HF (1988) A simple salting-out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1116:1215. doi:10.1093/nar/16.3.1215

    Article  Google Scholar 

  16. Cheng PL, Eng HL, Chou MH et al (2007) Genetic polymorphisms of viral infection-associated Toll-like receptors in Chinese population. Transl Res 150:311–318. doi:10.1016/j.trsl.2007.03.010

    Article  PubMed  CAS  Google Scholar 

  17. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    Article  PubMed  CAS  Google Scholar 

  18. Garantziotis S, Hollingsworth JW, Zaas AK et al (2008) Effects of Toll-like receptor and Toll-like receptor genetics in human disease. Annu Rev Med 59:167–183. doi:10.1146/annurev.med.59.061206.112455

    Article  Google Scholar 

  19. Beutler B, Jiang Z, Georgel P et al (2006) Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Annu Rev Immunol 24:353–389. doi:10.1146/annurev.immunol.24.021605.090552

    Article  PubMed  CAS  Google Scholar 

  20. He JF, Jia WH, Fan Q et al (2007) Genetic polymorphisms of TLR3 are associated with nasopharyngeal carcinoma risk in Cantonese population. BMC Cancer 7:194. doi:10.1186/1471-2407-7-194

    Article  PubMed  Google Scholar 

  21. Etokebe GE, Knezević J, Petricević B et al (2009) Single-nucleotide polymorphisms in genes encoding Toll-like receptor-2, -3, -4, and -9 in case-control study with breast cancer. Genet Test Mol Biomarkers 13:729–734. doi:10.1089/gtmb.2009.0045

    Article  PubMed  CAS  Google Scholar 

  22. Noguchi E, Nishimura F, Fukai H et al (2004) An association study of asthma and total serum immunoglobin E levels for Toll-like receptor polymorphisms in a Japanese population. Clin Exp Allergy 34:177–183. doi:10.1111/j.1365-2222.2004.01839.x

    Article  PubMed  CAS  Google Scholar 

  23. Berghofer B, Frommer T, Konig IR et al (2005) Common human Toll-like receptor 9 polymorphisms and haplotypes: association with atopy and functional relevance. Clin Exp Allergy 35:1147–1154. doi:10.1111/j.1365-2222.2005.02325.x

    Article  PubMed  CAS  Google Scholar 

  24. Lazarus R, Klimecki WT, Raby BA et al (2003) Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR 9): frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory case–control disease association studies. Genomics 81:85–91

    Article  PubMed  CAS  Google Scholar 

  25. Mollaki V, Georgiadis T, Tassidou A et al (2009) Polymorphisms and haplotypes in TLR 9 and MYD88 are associated with the development of Hodgkin’s lymphoma: a candidate-gene association study. J Hum Genet 54:655–659

    Article  PubMed  CAS  Google Scholar 

  26. Hold GL, Smith MG, McLean MH et al. (2006) Innate immune response gene polymorphisms and their role in H-pylori-induced gastric cancer. Gastroenterology130:A61

  27. Hold GL, Rabkin CS, Gammon MD et al (2009) CD14–159C/T and TLR9–1237T/C polymorphisms are not associated with gastric cancer risk in Caucasian populations. Eur J Cancer Prev 2:117–119. doi:10.1097/CEJ.0b013e3283101292

    Article  Google Scholar 

  28. Di JM, Pang J, Sun QP et al (2010) Toll-like receptor 9 agonists up-regulates the expression of cyclooxygenase-2 via activation of NF-kappaB in prostate cancer cells. Mol Biol Rep 37:1849–1855

    Article  PubMed  CAS  Google Scholar 

  29. Guo F, Liu Y, Li Y et al (2010) Inhibition of ADP-ribosylation factor-like 6 interacting protein 1 suppresses proliferation and reduces tumor cell invasion in CaSki human cervical cancer cells. Mol Biol Rep 37:3819–3825

    Article  PubMed  CAS  Google Scholar 

  30. Zhang YB, He FL, Fang M et al (2009) Increased expression of Toll-like receptors 4 and 9 in human lung cancer. Mol Biol Rep 36:1475–1481

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Senior Research Fellowship awarded by Indian Council of Medical Research (ICMR), New Delhi to Saumya Pandey is highly acknowledged.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Devi Mittal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, S., Mittal, B., Srivastava, M. et al. Evaluation of Toll-like receptors 3 (c.1377C/T) and 9 (G2848A) gene polymorphisms in cervical cancer susceptibility. Mol Biol Rep 38, 4715–4721 (2011). https://doi.org/10.1007/s11033-010-0607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0607-z

Keywords

Navigation