Skip to main content

Advertisement

Log in

Pseudogene: lessons from PCR bias, identification and resurrection

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pseudogenes are fragments of non-functional genomic DNA with high sequences similarity to normal functional genes. They are a kind of non-coding DNA produced by gene duplications or retrotranspositions. Pseudogenes exist in human genome at a large quantity which is nearly as much as that of normal functional genes. They could cause PCR bias in molecular biology experiments and confuse related analysis. On the other hand, pesudogenes are important elements in genomics study for getting an integral picture of genome annotation. They give diverse information of evolutionary history and are regarded as genome fossils. Worldwide research project “encyclopedia of DNA elements”(ENCODE) founded in recent years have enhanced our understanding of pseudogenes. Approaches established to identify pseudogenes include PseudoPipe, HAVANA method, PseudoFinder, RetroFinder, GIS-PET method and consensus method. This paper discuss pseudogenes with respect to the formation mechanisms, distribution, and problems for PCR, importance and identification of pseudogenes. Furthermore, potential resurrection of pseudogenes and their potential function are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jacq C et al (1977) A pseudogene in 5S DNA of Xenopus laevis. Cell 13:109–120

    Article  Google Scholar 

  2. Vanin EF (1985) Processed pseudogenes characteristics and evolution. Anal Rev Genet 19:253–272

    Article  CAS  Google Scholar 

  3. Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123–151

    Article  PubMed  CAS  Google Scholar 

  4. Harrison PM et al (2002) Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res 12:272–280

    Article  PubMed  CAS  Google Scholar 

  5. Ng P et al (2005) Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation patrick. Nat Method 2:105–111

    Article  CAS  Google Scholar 

  6. Zhang Z, Gerstein M (2004) Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 14:328–335

    Article  PubMed  CAS  Google Scholar 

  7. Zhang Z et al (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13:2541–2558

    Article  PubMed  CAS  Google Scholar 

  8. Gerstein M, Zheng D (2006) The real life of pseudogene. Sci Am 10:49–55

    Google Scholar 

  9. Mighell AJ et al (2000) Vertebrate pseudogenes. FEBS Lett 468:109–114

    Article  PubMed  CAS  Google Scholar 

  10. Menashe I et al (2003) Different noses for different people. Nat Genet 34:143–144

    Article  PubMed  CAS  Google Scholar 

  11. Maestre J et al (1995) mRNA retroposition in human cells: processed pseudogene formation. EMBO J 14:6333–6338

    PubMed  CAS  Google Scholar 

  12. Zhang Z et al (2002) Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome. Genome Res 12:1476–1482

    Article  Google Scholar 

  13. Zheng D et al (2007) Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription and evolution. Genome 17:839–851

    Article  CAS  Google Scholar 

  14. Czosnek HH et al (1984) The gene and the pseudogene for mouse p53 cellular tumor antigen are located on different chromosomes. Mol Cell Biol 4:1638–1640

    PubMed  CAS  Google Scholar 

  15. Kenmochi N et al (1998) A map of 75 human ribosomal protein genes. Genome Res 8:509–523

    PubMed  CAS  Google Scholar 

  16. Uechi T et al (2001) A complete map of the human ribosomal protein genes: assignment of 80 genes to the cytogenetic map and implications for human disorders. Genomics 72:223–230

    Article  PubMed  CAS  Google Scholar 

  17. Yoshihama M et al (2002) The human ribosomal protein genes: Sequencing and comparative analysis of 73 genes. Genome Res 12:379–390

    Article  PubMed  CAS  Google Scholar 

  18. Guo N et al (1998) The human ortholog of rhesus mannose-binding protein-A gene is an expressed pseudogene that localizes to chromosome 10. Mamm Genome 9:246–249

    Article  PubMed  CAS  Google Scholar 

  19. Ruud P et al (1999) Identification of a novel cytokeratin 19 pseudogene that may interfere with reverse transcriptase-polymerase chain reaction assays used to detect micrometastatic tumor cells. Int J Cancer 80:119–125

    Article  PubMed  CAS  Google Scholar 

  20. Williams ST, Knowlton N (2001) Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus. Mol Biol Evol 18:1481–1493

    Google Scholar 

  21. Nguyen T et al (2002) Amplification of multiple copies of mitochondrial Cytochrome b gene fragments in the Australian freshwater crayfish, Cherax destructor Clark (Parastacidae: Decapoda). Anim Genet 33:304–308

    Article  PubMed  CAS  Google Scholar 

  22. Barnard R et al (1998) PCR bias toward the wild-type k-ras and p53 sequences: implications for PCR detection of mutations and cancer diagnosis. Biotechniques 25:684–691

    PubMed  CAS  Google Scholar 

  23. Harrow J et al (2006) GENCODE: producing a reference annotation for ENCODE. Genome Biol 7:S4

    Article  PubMed  Google Scholar 

  24. Zhang Z et al (2006) PseudoPipe: an automated pseudogene identification pipeline. Bioinformatics 22:1437–1439

    Article  PubMed  CAS  Google Scholar 

  25. Zheng D et al (2006) A computational approach for identifying pseudogenes in the ENCODE regions. Genome Biol 7(Suppl 1):S13

    Article  PubMed  Google Scholar 

  26. Searle SM et al (2004) The otter annotation system. Genome Res 14:963–970

    Article  PubMed  CAS  Google Scholar 

  27. Kent WJ et al (2003) Evolution’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. PNAS 100:11484–11489

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz S et al (2003) Human-mouse alignments with BLASTZ. Genome Res 13:103–107

    Article  PubMed  CAS  Google Scholar 

  29. Lu YT et al. (2006) PseudoFinder: a genome-wide pseudogene finding method. ASHG Annual Meeting. Program No: 1284

  30. Chiu KP et al (2007) Pathway aberrations of murine melanoma cells observed in paired-end ditag transcriptomes. BMC Cancer 7:109

    Article  PubMed  Google Scholar 

  31. Fullwood MJ et al (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19:521–532

    Article  PubMed  CAS  Google Scholar 

  32. Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12(4):656–664

    PubMed  CAS  Google Scholar 

  33. Scarpulla RC (1984) Processed pseudogenes for rat cytochrome C are preferentially derived from one of three alternate mRNAs. Mol Cell Biol 4:2279–2288

    PubMed  CAS  Google Scholar 

  34. Dudov KP, Perry RP (1984) The gene family encoding the mouse ribosomal protein L32 contains a uniquely expressed intron-containing gene and an unmutated processed pseudogene. Cell 37:457–468

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Z et al (2004) Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genet 20:62–67

    Article  PubMed  Google Scholar 

  36. Bailey CD et al (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol 29:435–455

    Article  PubMed  CAS  Google Scholar 

  37. Harrison PM et al (2005) Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res 33:2374–2383

    Article  PubMed  CAS  Google Scholar 

  38. Fu LM et al (2007) Genome-wide analysis of intergenic regions of Mycobacterium tuberculosis H37Rv using Affymetrix GeneChips. J Bioinform Syst Biol 10:277–284

    Google Scholar 

  39. Rozowsky JS et al (2007) The DART classification of unannotated transcription within the ENCODE regions: associating transcription with known and novel loci. Genome Res 17:732–745

    Article  PubMed  CAS  Google Scholar 

  40. Tam OH (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453:534–538

    Article  PubMed  CAS  Google Scholar 

  41. Korneev SA et al (1999) Neuronal expression of neural nitric oxide synthase (nNOS) protein is suppressed by an antisense RNA transcribed from an NOS pseudogene. J Neurosci 19:7711–7720

    PubMed  CAS  Google Scholar 

  42. Hirotsune S, Yoshida N et al (2003) An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature 423:91–96

    Article  PubMed  CAS  Google Scholar 

  43. Kaneko S et al (2006) Origin and evolution of processed pseudogenes that stabilize functional makorin1 mRNAs in mice, primates and other mammals. GSA 172:2421–2429

    CAS  Google Scholar 

  44. Lai PC et al (2008) An olfactory receptor pseudogene whose function emerged in humans: a case study in the evolution of structure-function in GPCRs. J Struct Funct Genomics 9:29–40

    Article  PubMed  CAS  Google Scholar 

  45. Lin H et al (2007) Stem cell regulatory function mediated by expression of a novel mouse Oct4 pseudogene. Biochem Biophys Res Commun 355:111–116

    Article  PubMed  CAS  Google Scholar 

  46. The ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  Google Scholar 

  47. Gilad Y et al (2003) Human specific loss of olfactory receptor genes. PNAS 100:3324–3327

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SM., Ma, KY. & Zeng, J. Pseudogene: lessons from PCR bias, identification and resurrection. Mol Biol Rep 38, 3709–3715 (2011). https://doi.org/10.1007/s11033-010-0485-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0485-4

Keywords

Navigation