Skip to main content

Advertisement

Log in

Molecular cloning and characterization of a vacuolar H+-pyrophosphatase from Dunaliella viridis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The halotolerant alga Dunaliella adapts to exceptionally high salinity and possesses efficient mechanisms for regulating intracellular Na+. In plants, sequestration of Na+ into the vacuole is driven by the electrochemical H+ gradient generated by H+ pumps, and this Na+ sequestration is one mechanism that confers salt tolerance to plants. To investigate the role of vacuolar H+ pumps in the salt tolerance of Dunaliella, we isolated the cDNA of the vacuolar proton-translocating inorganic pyrophosphatase (V–H+-PPase) from Dunaliella viridis. The DvVP cDNA is 2,984 bp in length, codes for a polypeptide of 762 amino acids and has 15 transmembrane domains. The DvVP protein is highly similar to V–H+-PPases from other green algae and higher plant species, in terms of its amino acid sequence and its transmembrane model. A phylogenetic analysis of V–H+-PPases revealed the close relationship of Dunaliella to green algal species of Charophyceae and land plants. The heterologous expression of DvVP in the yeast mutant G19 (Δena1-4) suppressed Na+ hypersensitivity, and a GFP-fusion of DvVP localized to the vacuole membranes in yeast, indicating that DvVP encodes a functional V–H+-PPase. A northern blot analysis showed a decrease in the transcript abundance of DvVP at higher salinity in D. viridis cells, which is in contrast to the salt-induced upregulation of V–H+-PPase in some plants, suggesting that the expression of DvVP under salt stress may be regulated by different mechanisms in Dunaliella. This study not only enriched our knowledge about the biological functions of V–H+-PPases in different organisms but also improved our understanding of the molecular mechanism of salt tolerance in Dunaliella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

H+-PPase:

H+-pyrophosphatase

V–H+-PPase:

Vacuolar H+-pyrophosphatase

ORF:

Open reading frame

UTR:

Untranslated region

EST:

Expressed sequence tag

References

  1. Oren A (2005) A Hundred years of Dunaliella research: 1905–2005. Saline Systems 1:2. doi:10.1186/1746-1448-1-2

    Article  PubMed  Google Scholar 

  2. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258. doi:10.1126/science.285.5431.1256

    Article  PubMed  CAS  Google Scholar 

  3. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445. doi:10.1016/S1369-5266(03)00085-2

    Article  PubMed  CAS  Google Scholar 

  4. Gimmler H (2000) Primary sodium plasma membrane ATPase in salt-tolerant algae: facts and fictions. J Exp Bot 51:1171–1178

    Article  PubMed  CAS  Google Scholar 

  5. Goyal A (2007) Osmoregulation in Dunaliella, part II: photosynthesis and starch contribute carbon for glycerol synthesis during a salt stress in Dunaliella tertiolecta. Plant Physiol Biochem 45:705–710. doi:10.1016/j.plaphy.2007.05.009

    Article  PubMed  CAS  Google Scholar 

  6. Popova LG, Shumkova GA, Andreev IM, Balnokin YV (2005) Functional identification of electrogenic Na+-translocating ATPase in the plasma membrane of the halotolerant microalga Dunaliella maritima. FEBS Letters 579:5002–5006. doi:10.1016/j.febslet.2005.07.087

    Article  PubMed  CAS  Google Scholar 

  7. Katz A, Pick U (2001) Plasma membrane electron transport coupled to Na+ extrusion in the halotolerant alga Dunaliella. Biochim Biophys Acta 1504:423–431. doi:10.1016/S0005-2728(01)00157-8

    Article  PubMed  CAS  Google Scholar 

  8. Rea PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatases. Annu Rev Plant Physiol, Plant Mol Biol 44:157–180. doi:10.1146/annurev.pp.44.060193.001105

    Article  CAS  Google Scholar 

  9. Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  PubMed  CAS  Google Scholar 

  10. Taiz L (1992) The plant vacuole. J Exp Bot 172:113–122

    CAS  Google Scholar 

  11. Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot 55:585–594. doi:10.1093/jxb/erh070

    Article  PubMed  CAS  Google Scholar 

  12. Gao F, Gao Q, Duan X, Yue G, Yang A, Zhang J (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270. doi:10.1093/jxb/erl090

    Article  PubMed  CAS  Google Scholar 

  13. Guo S, Yin H, Zhang X, Zhao F, Li P, Chen S, Zhao Y, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol 60:41–50. doi:10.1007/s11103-005-2417-6

    Article  PubMed  CAS  Google Scholar 

  14. Gaxiola RA, Li JS, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449. doi:10.1073/pnas.191389398

    Article  PubMed  CAS  Google Scholar 

  15. Park S, Li J, Pittman JK, Berkowitz GA, Yang H, Undurraga S, Morris J, Hirschi KD, Gaxiola RA (2005) Up-regulation of a H+-pyrophosphatase (H+-P Pase) as a strategy to engineer drought-resistant crop plants. Proc Natl Acad Sci USA 102:18830–18835. doi:10.1073/pnas.0509512102

    Article  PubMed  CAS  Google Scholar 

  16. Wang W, Xu Z, Song R (2006) Identification of two Dunaliella sp based on nuclear ITS rDNA sequences. J Shanghai University (Nat Sci Edn) 12:84–88

    CAS  Google Scholar 

  17. Sun Y, Yang Z, Gao X, Li Q, Zhang Q, Xu Z (2005) Expression of foreign gene in Dunaliella by electrophoration. Mol Biotechnol 30:185–192. doi:10.1385/MB:30:3:185

    Article  PubMed  CAS  Google Scholar 

  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  19. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  20. Quintero FJ, Garciadeblas B, Rodríguez-Navarro A (1996) The SAL1 gene of Arabidopsis, encoding an enzyme with 3′(2′), 5′-bisphosphate nucleotidase and inositol 1-phosphatase activities, increases salt tolerance in yeast. Plant Cell 8:529–537

    Article  PubMed  CAS  Google Scholar 

  21. Saloheimo A, Henrissat B, Hoffrén A, Teleman O, Penttilä M (1994) A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mol Microbiol 13:219–228

    Article  PubMed  CAS  Google Scholar 

  22. Gietz D, St Jean A, Woods RA, Schiest RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucl Acid Res 20:1425

    Article  CAS  Google Scholar 

  23. Alonso R, Ramos J (1984) Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol 159:940–945

    Google Scholar 

  24. Lau WT, Howson RW, Malkus P, Schekman R, O’Shea EK (2000) Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc Natl Acad Sci USA 97:1107–1112

    Article  PubMed  CAS  Google Scholar 

  25. Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolarmembrane dynamics and endocytosis in yeast. J Cell Biol 128:779–792

    Article  PubMed  CAS  Google Scholar 

  26. Guan Z, Meng X, Sun Z, Xu Z, Song R (2008) Characterization of duplicated Dunaliella viridis SPT1 genes provides insights into early gene divergence after duplication. Gene 423:36–42. doi:10.1016/j.gene.2008.06.029

    Article  PubMed  CAS  Google Scholar 

  27. Li Q, Gao X, Sun Y, Zhang Q, Song R, Xu Z (2006) Isolation and characterization of a sodium- dependent phosphate transporter gene in Dunaliella viridis. Biochem Biophys Res Commun 340:95–104. doi:10.1016/j.bbrc.2005.11.144

    Article  PubMed  CAS  Google Scholar 

  28. Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Letters 581:2204–2214. doi:10.1016/j.febslet.2007.03.050

    Article  PubMed  CAS  Google Scholar 

  29. Drozdowicz YM, Rea PA (2001) Vacuolar H+ pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6:206–211. doi:10.1016/S1360-1385(01)01923-9

    Article  PubMed  CAS  Google Scholar 

  30. Zhen RG, Kim EJ, Rea PA (1997) Acidic residues necessary for pyrophosphate-energized pumping and inhibition of the vacuolar H + -pyrophosphatase by N, N′-dicyclohexylcarbodiimide. J Biol Chem 272:22340–22348. doi:10.1074/jbc.272.35.22340

    Article  PubMed  CAS  Google Scholar 

  31. Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper S, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    Article  PubMed  CAS  Google Scholar 

  32. Ballesteros E, Donaire JP, Belver A (1996) Effects of salt stress on H+-ATPase and H+-PPase activities of tonoplast-enriched vesicles isolated from sunflower roots. Physiol Plant 97:259–568

    Article  CAS  Google Scholar 

  33. Brini F, Gaxiola RA, Berkowitz GA, Masmoudi K (2005) Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiol Biochem 43:347–354. doi:10.1016/j.plaphy.2005.02.010

    PubMed  CAS  Google Scholar 

  34. Otoch MLO, Sobreira ACM, de-aragao MEF, Orellano EG, Lima MGS, de-Melo DF (2001) Salt modulation of vacuolar H+-ATPase and H+-phrophosphatase activities in Vigna unguiculata. J Plant Physiol 158:545–551. doi:10.1078/0176-1617-00310

    Article  CAS  Google Scholar 

  35. Parks GE, Dietrich MA, Schumaker KS (2002) Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl. J Exp Bot 53:1055–1065

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Alonso Rodriguez-Navarro (Universidad Politécnica de Madrid, Spain) for providing the yeast G19 mutant, Dr. Erin K. O’Shea (University of California, San Francisco) for providing the plasmid EB0666 and Dr. Anu Saloheimo (VTT Biotechnology, Finland) for providing the pAJ401 vector. This work was supported by National Natural Sciences Foundation of China (30871278, 30970242), Ministry of Agriculture of China (2008ZX08003-001, 2008ZX08003-005) and the Research Foundation from Shanghai Municipal Education Commission (09DZ2271800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rentao Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, X., Xu, Z. & Song, R. Molecular cloning and characterization of a vacuolar H+-pyrophosphatase from Dunaliella viridis . Mol Biol Rep 38, 3375–3382 (2011). https://doi.org/10.1007/s11033-010-0445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0445-z

Keywords

Navigation