Skip to main content

Advertisement

Log in

Induction of cytotoxicity by photoexcitation of TiO2 can prolong survival in glioma-bearing mice

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We have investigated the possibility that photoexcited titanium dioxide (TiO2) could inhibit the growth of malignant cells. We studied the anti-glioma effects of nano-TiO2 excited with ultraviolet A (UVA) irradiation both in vitro and in vivo. Transmission electron microscopy demonstrated that glioma cells take up TiO2 by phagocytosis, and vital staining revealed that TiO2 alone has no effect on glioma cell proliferation. However, if TiO2 was combined with UVA irradiation the proliferation rate was decreased significantly compared to controls (P < 0.05). RT–PCR suggested that TiO2 induction of glioma cell apoptosis is associated with changes in the expression of genes encoding Bcl-2 family members. We then investigated the in vivo antitumor effects of combined TiO2 plus UVA treatment of established glioma tumors. TiO2 plus UVA led to pronounced areas of necrosis, elevated indices of apoptosis, delayed tumor growth, and increased survival compared with the TiO2-alone control group (P < 0.001). Log-rank survival analysis showed that median survival duration was prolonged (P < 0.001). These findings suggest that nano-TiO2 based photodynamic therapy has potential in the treatment of glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il’yasova D, Kruchko C, McCarthy BJ, Rajaraman P, Schwartzbaum JA, Sadetzki S, Schlehofer B, Tihan T, Wiemels JL, Wrensch M, Buffler PA (2008) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 113:1953–1968

    Article  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  3. Tianhu Z, Shiguang Z, Xinghan L (2010) Bmf is upregulated by PS-341-mediated cell death of glioma cells through JNK phosphorylation. Mol Biol Rep 37:1211–1219

    Article  PubMed  Google Scholar 

  4. Shervington A, Pawar V, Menon S, Thakkar D, Patel R (2009) The sensitization of glioma cells to cisplatin and tamoxifen by the use of catechin. Mol Biol Rep 36:1181–1186

    Article  CAS  PubMed  Google Scholar 

  5. Popovic EA, Kaye AH, Hill JS (1996) Photodynamic therapy of brain tumors. J Clin Laser Med Surg 14:251–261

    CAS  PubMed  Google Scholar 

  6. D’Cruz AK, Robinson MH, Biel MA (2004) mTHPC-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: a multicenter study of 128 patients. Head Neck 26:232–240

    Article  PubMed  Google Scholar 

  7. Hertz A, Bruce IJ (2007) Inorganic materials for bone repair or replacement applications. Nanomedicine 2:899–918

    Article  CAS  PubMed  Google Scholar 

  8. Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R, Sakai H, Hashimoto K, Fujishima A (1994) Photokilling of T-24 human bladder cancer cells with titanium dioxide. Br J Cancer 70:1107–1111

    CAS  PubMed  Google Scholar 

  9. Lee YS, Yoon S, Yoon HJ, Lee K, Yoon HK, Lee JH, Song CW (2009) Inhibitor of differentiation 1 (Id1) expression attenuates the degree of TiO2-induced cytotoxicity in H1299 non-small cell lung cancer cells. Toxicol Lett 189:191–199

    Article  CAS  PubMed  Google Scholar 

  10. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  11. Wang JJ, Sanderson BJ, Wang H (2007) Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628:99–106

    CAS  PubMed  Google Scholar 

  12. Charriaut-Marlangue C, Ben-Ari Y (1995) A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7:61–64

    CAS  PubMed  Google Scholar 

  13. Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545

    Article  CAS  PubMed  Google Scholar 

  14. Krishnamurthy S, Powers SK, Witmer P, Brown T (2000) Optimal light dose for interstitial photodynamic therapy in treatment for malignant brain tumors. Lasers Surg Med 27:224–234

    Article  CAS  PubMed  Google Scholar 

  15. Muller PJ, Wilson BC (1995) Photodynamic therapy for recurrent supratentorial gliomas. Semin Surg Oncol 11:346–354

    Article  CAS  PubMed  Google Scholar 

  16. Huang C, Li J, Zheng R, Cui K (2000) Hydrogen peroxide-induced apoptosis in human hepatoma cells is mediated by CD95(APO-1/Fas) receptor/ligand system and may involve activation of wild-type p53. Mol Biol Rep 27:1–11

    Article  CAS  PubMed  Google Scholar 

  17. Furuse K, Fukuoka M, Kato H, Horai T, Kubota K, Kodama N, Kusunoki Y, Takifuji N, Okunaka T, Konaka C (1993) A prospective phase II study on photodynamic therapy with photofrin II for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group. J Clin Oncol 11:1852–1857

    CAS  PubMed  Google Scholar 

  18. Ris HB, Altermatt HJ, Inderbitzi R, Hess R, Nachbur B, Stewart JC, Wang Q, Lim CK, Bonnett R, Berenbaum MC et al (1991) Photodynamic therapy with chlorins for diffuse malignant mesothelioma: initial clinical results. Br J Cancer 64:1116–1120

    CAS  PubMed  Google Scholar 

  19. Gossner L, Stolte M, Sroka R, Rick K, May A, Hahn EG, Ell C (1998) Photodynamic ablation of high-grade dysplasia and early cancer in Barrett’s esophagus by means of 5-aminolevulinic acid. Gastroenterology 114:448–455

    Article  CAS  PubMed  Google Scholar 

  20. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651

    Article  CAS  PubMed  Google Scholar 

  21. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  22. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  PubMed  Google Scholar 

  23. Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992) Induction of cytotoxicity by photoexcited TiO2 particles. Cancer Res 52:2346–2348

    CAS  PubMed  Google Scholar 

  24. Stearns RC, Paulauskis JD, Godleski JJ (2001) Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol 24:108–115

    CAS  PubMed  Google Scholar 

  25. Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Article  PubMed  Google Scholar 

  26. Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Höhr D, Fubini B, Martra G, Fenoglio I, Borm PJA, Schins RPF (2007) Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 222:141–151

    Article  CAS  PubMed  Google Scholar 

  27. Zhao J, Bowman L, Zhang X, Vallyathan V, Young SH, Castranova V, Ding M (2009) Titanium dioxide (TiO2) nanoparticles induce JB6 cell apoptosis through activation of the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A 72:1141–1149

    Article  CAS  PubMed  Google Scholar 

  28. Palomaki J, Karisola P, Pylkkanen L, Savolainen K, Alenius H (2010) Engineered nanomaterials cause cytotoxicity and activation on mouse antigen presenting cells. Toxicology 267:125–131

    Article  CAS  PubMed  Google Scholar 

  29. Schmidt MH, Meyer GA, Reichert KW, Cheng J, Krouwer HG, Ozker K, Whelan HT (2004) Evaluation of photodynamic therapy near functional brain tissue in patients with recurrent brain tumors. J Neurooncol 67:201–207

    Article  PubMed  Google Scholar 

  30. Stylli SS, Howes M, MacGregor L, Rajendra P, Kaye AH (2004) Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome. J Clin Neurosci 11:584–596

    Article  CAS  PubMed  Google Scholar 

  31. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul 41:189–207

    Article  CAS  Google Scholar 

  32. McCarthy JR, Perez JM, Bruckner C, Weissleder R (2005) Polymeric nanoparticle preparation that eradicates tumors. Nano Lett 5:2552–2556

    Article  CAS  PubMed  Google Scholar 

  33. Reddy GR, Bhojani MS, McConville P, Moody J, Moffat BA, Hall DE, Kim G, Koo YE, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12:6677–6686

    Article  CAS  PubMed  Google Scholar 

  34. Chen LF, Ke YQ, Yang ZL, Wang SQ, Xu RX (2005) Effect of photodynamic therapy combined with interstitial chemotherapy for gliomas. Di Yi Jun Yi Da Xue Xue Bao 25:116–118

    PubMed  Google Scholar 

  35. Johansson A, Stepp H, Beck T, Beyer W, Pongratz T, Sroka R, Meinel T, Stummer W, Kreth F-W, Tonn J-C, Baumgartner R (2009) ALA-mediated fluorescence-guided resection (FGR) and PDT of glioma. doi:10.1117/12.822962

  36. Tsai MC, Tsai TL, Shieh DB, Chiu HT, Lee CY (2009) Detecting HER2 on cancer cells by TiO2 spheres Mie scattering. Anal Chem 81:7590–7596

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation (30300100) and NCET (NCET-08-0867, Program for New Century Excellent Talents in University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anhua Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Cao, S., Tie, X. et al. Induction of cytotoxicity by photoexcitation of TiO2 can prolong survival in glioma-bearing mice. Mol Biol Rep 38, 523–530 (2011). https://doi.org/10.1007/s11033-010-0136-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0136-9

Keywords

Navigation