Skip to main content
Log in

Molecular characterization of a phenylalanine ammonia-lyase gene (BoPAL1) from Bambusa oldhamii

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Phenylalanine ammonia-lyase is the first enzyme of general phenylpropanoid pathway. A PAL gene, designated as BoPAL1, was cloned from a Bambusa oldhamii cDNA library. The open reading frame of BoPAL1 was 2,139 bp in size and predicted to encode a 712-amino acid polypeptide. BoPAL1 was the first intronless PAL gene found in angiosperm plant. Several putative cis-acting elements such as P box, GT-1motif, and SOLIPs involved in light responsiveness were found in the 5′-flanking sequence of BoPAL1 which was obtained by TAIL-PCR method. Recombinant BoPAL1 protein expressed in Pichia pastoris was active. The optimum temperature and pH for BoPAL1 activity was 50°C and 9.0, respectively. The molecular mass of recombinant BoPAL1 was estimated as 323 kDa using gel filtration chromatography and the molecular mass of full-length BoPAL was about 80 kDa, indicating that BoPAL1 presents as a homotetramer. The K m and k cat values of BoPAL1 for L-Phe were 1.01 mM and 10.11 s−1, respectively. The recombinant protein had similar biochemical properties with PALs reported in other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koukol J, Conn EE (1961) Metabolism of aromatic compounds in higher plants. IV. Purification and properties of phenylalanine deaminase of Horden vulgare. J Biol Chem 236:2692–2698

    CAS  PubMed  Google Scholar 

  2. Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenyl-propanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  3. Dixon RA, Paiva NL (1995) Stress induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  CAS  PubMed  Google Scholar 

  4. Sarma AD, Sreelakshmi Y, Sharma R (1998) Differential expression and properties of phenylalanine ammonia-lyase isoforms in tomato leaves. Phytochemistry 49:2233–2243

    Article  CAS  PubMed  Google Scholar 

  5. Sarma AD, Sharma R (1999) Purification and characterization of UV-B induced phenylalanine ammonia-lyase from rice seeding. Phytochemistry 50:729–737

    Article  CAS  Google Scholar 

  6. Hisaminato H, Murata M, Homma S (2001) Relationship between the enzymatic browning and phenylalanine ammonia-lyase activity of cut lettuce, and the prevention of browning by inhibitors of polyphenol biosynthesis. Biosci Biotechnol Biochem 65:1016–1021

    Article  CAS  PubMed  Google Scholar 

  7. Nugroho LH, Verberne MC, Verpoorte R (2002) Activities of enzymes involved in the phenylpropanoid pathway in constitutively salicylic acid-producing tobacco plants. Plant Physiol Biochem 40:755–760

    Article  CAS  Google Scholar 

  8. Chaman ME, Copaja SV, Argandona VH (2003) Relationships between salicylic acid content, phenylalanine ammonia-lyase (PAL) activity, and resistance of barley to aphid infestation. J Agric Food Chem 51:2227–2231

    Article  CAS  PubMed  Google Scholar 

  9. Lu Y, Wang H, Wang W, Qian Z, Li L, Wang J, Zhou G, Kai G (2009) Molecular characterization and expression analysis of a new cDNA encoding strictosidine synthase from Ophiorrhiza japonica. Mol Biol Rep 36:1845–1852

    Article  CAS  PubMed  Google Scholar 

  10. Kim SH, Kronstad JW, Ellis BE (1996) Purification and characterization of phenylalanine ammonia-lyase from Ustilago maydis. Phytochemistry 43:351–357

    Article  CAS  Google Scholar 

  11. Hattori T, Nishiyawa A, Shimada M (1999) Induction of L-phenylalanine ammonia-lyase and suppression of veratryl alcohol biosynthesis by exogenously added L-phenylalanine in a white-rot fungus Phanerochaete chrysosporium. FEMS Microbiol Lett 179:305–309

    CAS  PubMed  Google Scholar 

  12. Moffitt MC, Louie GV, Bowman ME, Pence J, Noel JP, Moore BS (2007) Discovery of the cyanobacterial phenylalanine ammonia-lyases: kinetic and structural characterization. Biochemistry 46:1004–1012

    Article  CAS  PubMed  Google Scholar 

  13. Xiang L, Moore BS (2005) Biochemical characterization of a prokaryotic phenyl-alanine ammonia lyase. J Bacteriol 187:4286–4289

    Article  CAS  PubMed  Google Scholar 

  14. Ritter H, Schulz GE (2004) Structural basis of the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16:3426–6436

    Article  CAS  PubMed  Google Scholar 

  15. Appert C, Logemann E, Hahlbrock K, Schmid J, Amrhein N (1994) Structural and catalytic properties of the four phenylalanine ammonia-lyase isozymes from parsley (Petroselinum crispum Nym.). Eur J Biochem 225:491–499

    Article  CAS  PubMed  Google Scholar 

  16. Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. Proc Natl Acad Sci USA 92:5905–5909

    Article  CAS  PubMed  Google Scholar 

  17. Wanner LA, Li G, Ware D, Somssich IE, Davis KR (1995) The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol 27:327–338

    Article  CAS  PubMed  Google Scholar 

  18. Cochrane FC, Davin LB, Lewis NG (2004) The Arabidopsis phenylalanine ammonia- lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry 65:1557–1564

    Article  CAS  PubMed  Google Scholar 

  19. Guo J, Wang WH (2009) Characterization of the phenylalanine ammonia-lyase gene (SlPAL5) from tomato (Solanum lycopersicum L.). Mol Biol Rep 36:1579–1585

    Article  CAS  PubMed  Google Scholar 

  20. Chávez-Avilés M, Díaz-Pérez AL, Campos-García J (2010) The bifunctional role of LiuE from Pseudomonas aeruginosa, displays additionally HIHG-CoA lyase enzymatic activity. Mol Biol Rep 37:1787–1791

    Article  PubMed  Google Scholar 

  21. Havir EA, Reid PD, Marsh HV Jr (1971) L-phenylalanine ammonia-lyase (maize). Plant Physiol 48:130–136

    Article  CAS  PubMed  Google Scholar 

  22. Rösler J, Krekel F, Amrhein N, Schmid J (1997) Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol 113:175–179

    Article  PubMed  Google Scholar 

  23. Kyndt JA, Meyer TE, Cusanovich MA, Van Beeumen JJ (2002) Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Lett 512:240–244

    Article  CAS  PubMed  Google Scholar 

  24. Watts KT, Mijts BN, Lee PC, Manning AJ, Schmidt-Dannert C (2006) Discovery of a substrate selectivity switch in tyrosine ammonia-lyase, a member of the aromatic amino acid lyase family. Chem Biol 13:1317–1326

    Article  CAS  PubMed  Google Scholar 

  25. Louie GV, Bowman ME, Moffitt MC, Baiga TJ, Moore BS, Noel NP (2006) Structural determinants and modulation of substrate specificity in phenylalanine-tyrosine ammonia-lyase. Chem Biol 13:1327–1338

    Article  CAS  PubMed  Google Scholar 

  26. Tomas-Barberan FA, Gill MI, Castaner M, Artes F, Saltveit ME (1997) Effect of selected browning inhibitors on phenolic metabolism in stem tissue of harvested lettuce. J Agric Food Chem 45:583–589

    Article  CAS  Google Scholar 

  27. Hsieh LS, Yeh CS, Pan HC, Cheng CY, Yang CC, Lee PD (2010) Cloning and expression of a phenylalanine ammonia-lyase gene (BoPAL2) from Bambusa oldhamii in Escherichia coli and Pichia pastoris. Protein Expr Purif 71:224–230

    Article  CAS  PubMed  Google Scholar 

  28. Spiess AN, Ivell R (2002) A highly efficient method for long-chain cDNA synthesis using trehalose and betaine. Anal Biochem 301:168–174

    Article  CAS  PubMed  Google Scholar 

  29. Terauchi R, Kahl G (2000) Rapid isolation of promoter sequences by TAIL-PCR: the 5′-flanking regions of Pal and Pgi genes from yams (Dioscorea). Mol Gen Genet 263:554–560

    Article  CAS  PubMed  Google Scholar 

  30. Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31:114–117

    Article  CAS  PubMed  Google Scholar 

  31. Chang WC, Lee TY, Huang HD, Huang HY, Pan RL (2008) PlantPAN: plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene group. BMC Genomics 9:561

    Article  PubMed  Google Scholar 

  32. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  33. D’Cunha GB, Satyanarayan S, Nair PM (1996) Purification of phenylalanine ammonia lyase from Rhodotorula glutinis. Phytochemistry 42:17–20

    Article  Google Scholar 

  34. Rétey J (2003) Discovery and role of methylidene imidazolone, a highly electrophilic prosthetic group. Biochim Biophys Acta 1647:179–184

    PubMed  Google Scholar 

  35. MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia-lyase. Biochem Cell Biol 85:273–282

    Article  CAS  PubMed  Google Scholar 

  36. Song J, Wang Z (2009) Molecular cloning, expression and characterization of a phenylalanine ammonia-lyase gene (SmPAL1) from Salvia miltiorrhiza. Mol Biol Rep 36:939–952

    Article  CAS  PubMed  Google Scholar 

  37. Minami E, Ozeki Y, Matsuoka M, Koizuka N, Tanaka Y (1989) Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants. Eur J Biochem 185:19–25

    Article  CAS  PubMed  Google Scholar 

  38. Xu F, Cai R, Cheng S, Du H, Wang Y, Cheng S (2008) Molecular cloning, characterization and expression of phenylalanine ammonia-lyase gene from Ginkgo biloba. Afr J Biotechnol 7:721–729

    Google Scholar 

  39. Zhu Q, Ordiz MI, Dabi T, Beachy RN, Lamb CJ (2002) Rice TATA binding protein interacts functionally with transcription factor IIB and the RF2a bZIP transcriptional activator in an enhanced plant in vitro transcription system. Plant Cell 14:795–803

    Article  CAS  PubMed  Google Scholar 

  40. Sablowski RWM, Moyano E, Culianez-Macia FA, Schuch W, Martin C, Bevan M (1994) A flower-specific Myb protein activates transcription of phenylpropanoid biosynthetic genes. EMBO J 13:128–137

    CAS  PubMed  Google Scholar 

  41. Lam E, Chua NH (1989) ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in cab promoters. Plant Cell 1:1147–1156

    Article  CAS  PubMed  Google Scholar 

  42. Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474

    Article  CAS  Google Scholar 

  43. Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of phytochrome A-regulated gene expression by combined analysis of genomic sequence and microarray data. Plant Physiol 133:1605–1616

    Article  CAS  PubMed  Google Scholar 

  44. Lu CA, Ho THD, Ho SL, Yu SM (2002) Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-amylase gene expression. Plant Cell 14:1963–1980

    Article  CAS  PubMed  Google Scholar 

  45. Lim HW, Park SS, Lim CJ (1997) Purification and properties of phenylalanine ammonia-lyase from leaf mustard. Mol Cells 7:715–720

    CAS  PubMed  Google Scholar 

  46. Tanaka Y, Uritani I (1977) Purification and properties of phenylalanine ammonia-lyase in cut injured sweet potato. J Biochem 81:963–970

    CAS  PubMed  Google Scholar 

  47. Jain M, Khurana P, Tyagi AK, Khurana JP (2008) Genome-wide analysis of intronless genes in rice and Arabidopsis. Funct Integr Genomics 8:69–78

    Article  CAS  PubMed  Google Scholar 

  48. Lin S, Hu Y, Wang X, Han L, Song S, Cheng H, Lin Z (2009) Isolation and characterization of a gene encoding cinnamate 4-hydroxylase from Parthenocissus henryana. Mol Biol Rep 36:1605–1610

    Article  PubMed  Google Scholar 

  49. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastrois. FEMS Microbiol Rev 24:45–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Science Council of the Republic of China (Taiwan). We thank Prof. Ai-Yu Wang (National Taiwan University) for providing the Bambusa oldhamii cDNA library.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chien-Chih Yang or Ping-Du Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1838 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, LS., Hsieh, YL., Yeh, CS. et al. Molecular characterization of a phenylalanine ammonia-lyase gene (BoPAL1) from Bambusa oldhamii . Mol Biol Rep 38, 283–290 (2011). https://doi.org/10.1007/s11033-010-0106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0106-2

Keywords

Navigation