Skip to main content
Log in

The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The 15,338-bp long complete mitochondrial genome (mitogenome) of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae) was determined. This genome has a gene arrangement identical to those of all other sequenced lepidopteran insects, but differs from the most common type, as the result of the movement of tRNAMet to a position 5′-upstream of tRNAIle. No typical start codon of the A. yamamai COI gene is available. Instead, a tetranucleotide, TTAG, which is found at the beginning context of all sequenced lepidopteran insects was tentatively designated as the start codon for A. yamamai COI gene. Three of the 13 protein-coding genes (PCGs) harbor the incomplete termination codon, T or TA. All tRNAs formed stable stem-and-loop structures, with the exception of tRNASer(AGN), the DHU arm of which formed a simple loop as has been observed in many other metazoan mt tRNASer(AGN). The 334-bp long A + T-rich region is noteworthy in that it harbors tRNA-like structures, as has also been seen in the A + T-rich regions of other insect mitogenomes. Phylogenetic analyses of the available species of Bombycoidea, Pyraloidea, and Tortricidea bolstered the current morphology-based hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As has been previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (A. yamamai and Caligula boisduvalii) formed a reciprocal monophyletic group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tuskes PM, Tuttle JP, Collins MM (1996) The wild silk moths of North America. Cornell University Press, New York

    Google Scholar 

  2. Park KT, Kim SS, Tshistjakov YA, Kwon YD (1999) Insects of korea series 4. Illustrated catalogue of moths in Korea (i) (sphingidae, bombicoidea, notodontidae). Jeonghaengsa, Seoul

    Google Scholar 

  3. Yoon HY, Kang PD, Kim SE, Lee SM (2006) Breeding of major characteristics of the wild silkmoth, Antheraea yamamai indoor-and outdoor-reared. Korean J Sericult Sci 48:61–67

    Google Scholar 

  4. Arunkumar KP, Metta M, Nagaraju J (2006) Molecular phylogeny of silk moths reveals the origin of domesticated silk moth, Bombyx mori from Chinese Bombyx mandarina and paternal inheritance of Antheraea proylei mitochondrial DNA. Mol Phylogenet Evol 40:419–427. doi:10.1016/j.ympev.2006.02.023

    Article  PubMed  CAS  Google Scholar 

  5. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216. doi:10.1016/S0074-7696(08)62066-5

    Article  PubMed  CAS  Google Scholar 

  6. Fauron CMR, Wolstenholme DR (1980) Extensive diversity among Drosophila species with respect to nucleotide sequences within the adenine + thymine-rich region of mitochondrial DNA molecules. Nucleic Acids Res 8:2439–2452. doi:10.1093/nar/8.11.2439

    Article  PubMed  CAS  Google Scholar 

  7. Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y (2002) Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Mol Biol Evol 19:1385–1389

    PubMed  CAS  Google Scholar 

  8. Hong MY, Lee EM, Jo YH, Park HC, Kim SR, Hwang JS, Jin BR, Kang PD, Kim K-G, Han YS, Kim I (2008) Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene 413:49–57. doi:10.1016/j.gene.2008.01.019

    Article  PubMed  CAS  Google Scholar 

  9. Cameron SL, Whiting MF (2008) The complete mitochondrial genome of the tobacco hornworm, Manduca sexta (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene 408:112–113. doi:10.1016/j.gene.2007.10.023

    Article  PubMed  CAS  Google Scholar 

  10. Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR (2006) The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). Insect Mol Biol 15:217–225. doi:10.1111/j.1365-2583.2006.00630.x

    Article  PubMed  CAS  Google Scholar 

  11. Lee ES, Shin KS, Kim MS, Park H, Cho S, Kim CB (2006) The mitochondrial genome of the smaller tea tortix Adoxophyes honmai (Lepidoptera: Tortricidae). Gene 373:52–57. doi:10.1016/j.gene.2006.01.003

    Article  PubMed  CAS  Google Scholar 

  12. Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2005) Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis. Int J Biol Sci 1:13–18

    PubMed  CAS  Google Scholar 

  13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:173–216

    Google Scholar 

  14. Brodsky LI, Vasiliev AV, Kalaidzidis YL, Osipov YS, Tatuzov ARL, Feranchuk SI (1992) GeneBee: the program package for biopolymer structure analysis. Dimacs 8:127–139

    Google Scholar 

  15. Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271. doi:10.1007/BF02099755

    Article  PubMed  CAS  Google Scholar 

  16. Beard CB, Mills D, Collins FH (1993) The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol 2:103–124. doi:10.1111/j.1365-2583.1993.tb00131.x

    Article  PubMed  CAS  Google Scholar 

  17. Wernersson R, Pedersen AG (2003) Multiple alignment of coding DNA from aligned amino acid sequences. Nucleic Acids Res 31:3537–3539. doi:10.1093/nar/gkg609

    Article  PubMed  CAS  Google Scholar 

  18. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic tool. Curr Opin Genet Dev 8:668–674

    Google Scholar 

  19. Schmidt HA, Strimmer K, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504. doi:10.1093/bioinformatics/18.3.502

    Article  PubMed  CAS  Google Scholar 

  20. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723. doi:10.1109/TAC.1974.1100705

    Article  Google Scholar 

  21. Abascal F, Zardoya R, Posada D (2005) ProTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105. doi:10.1093/bioinformatics/bti263

    Article  PubMed  CAS  Google Scholar 

  22. Posada D, Crandal KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817

    Article  PubMed  CAS  Google Scholar 

  23. Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42:459–468. doi:10.1007/BF02498640

    Article  PubMed  CAS  Google Scholar 

  24. Abascal F, Posada D, Zardoya R (2007) MtArt: a new model of amino acid replacement for arthropoda. Mol Biol Evol 24:1–5. doi:10.1093/molbev/msl136

    Article  PubMed  CAS  Google Scholar 

  25. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93. doi:10.1007/BF02101990

    Article  PubMed  CAS  Google Scholar 

  26. Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogeny. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/17.8.754

    Article  PubMed  CAS  Google Scholar 

  27. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML: online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:W557–W559. doi:10.1093/nar/gki352

    Article  PubMed  CAS  Google Scholar 

  28. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods) ver 4.10. Sinauer Associates, Sunderland

    Google Scholar 

  29. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39:783–791. doi:10.2307/2408678

    Google Scholar 

  30. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780. doi:10.1093/nar/27.8.1767

    Article  PubMed  CAS  Google Scholar 

  31. Boore JL, Lavrov D, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 393:667–668. doi:10.1038/33577

    Article  Google Scholar 

  32. Anderson S, Bankier AT, Barrell BG, de Bruijin MHL, Droujn ARJ, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465. doi:10.1038/290457a0

    Article  PubMed  CAS  Google Scholar 

  33. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474. doi:10.1038/290470a0

    Article  PubMed  CAS  Google Scholar 

  34. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120. doi:10.1016/S0305-1978(96)00042-7

    Article  Google Scholar 

  35. Saito S, Tamuea K, Aotsuka T (2005) Replication origin of mitochondrial DNA in insects. Genetics 171:433–448. doi:10.1534/genetics.105.046243

    Article  Google Scholar 

  36. Clary DO, Wolstenholme DR (1987) Drosophila mitochondrial DNA: Conserved sequences in the A + T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA. J Mol Evol 25:116–125. doi:10.1007/BF02101753

    Article  PubMed  CAS  Google Scholar 

  37. Zhang D, Szymura JM, Hewitt GM (1995) Evolution and structural conservation of the control region of insect mitochondrial DNA. J Mol Evol 40:382–391. doi:10.1007/BF00164024

    Article  PubMed  CAS  Google Scholar 

  38. Schultheis AS, Weigt LA, Hendricks AC (2002) Arrangement and structural conservation of the mitochondrial control region of two species of Plecoptera: utility of tandem repeat-containing regions in studies of population genetics and evolutionary history. Insect Mol Biol 11:605–610. doi:10.1046/j.1365-2583.2002.00371.x

    Article  PubMed  CAS  Google Scholar 

  39. Crozier RH, Crozier YC (1993) The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133:97–117

    PubMed  CAS  Google Scholar 

  40. Cha SY, Yoon HJ, Lee EM, Yoon MH, Hwang JS, Jin BR, Han YS, Kim I (2007) The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera: Apidae). Gene 392:206–220. doi:10.1016/j.gene.2006.12.031

    Article  PubMed  CAS  Google Scholar 

  41. Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC (1987) Duplication and remodeling of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 329:853–855. doi:10.1038/329853a0

    Article  PubMed  CAS  Google Scholar 

  42. Minet J (1991) Tentative reconstruction of the ditrysian phylogeny (Lepidoptera: Glossata). Entomol Scand 22:69–95

    Google Scholar 

  43. Hwang JS, Lee JS, Goo TW, Yun EY, Sohn HR, Kim HR, Kwon OY (1999) Molecular genetic relationships between Bombycidae and Saturniidae based on the mitochondria DNA encoding of large and small rRNA. Genet Anal 15:223–228

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (code 20070401034004) from the Biogreen 21 Program, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iksoo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.R., Kim, M.I., Hong, M.Y. et al. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae). Mol Biol Rep 36, 1871–1880 (2009). https://doi.org/10.1007/s11033-008-9393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9393-2

Keywords

Navigation