Skip to main content
Log in

Functional analysis of mitogen-activated protein kinases (MAPKs) in potato under biotic and abiotic stress

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Biotic and abiotic stresses are the main constrain of potato (Solanum tuberosum L.) production all over the world. To overcome these hurdles, many techniques and mechanisms have been used for increasing food demand for increasing population. One of such mechanism is mitogen-activated protein kinase (MAPK) cascade, which is significance regulators of MAPK pathway under various biotic and abiotic stress conditions in plants. However, the acute role in potato for various biotic and abiotic resistance is not fully understood. In eukaryotes including plants, MAPK transfer information from sensors to responses. In potato, biotic and abiotic stresses, as well as a range of developmental responses including differentiation, proliferation, and cell death in plants, MAPK plays an essential role in transduction of diverse extracellular stimuli. Different biotic and abiotic stress stimuli such as pathogen (bacteria, virus, and fungi, etc.) infections, drought, high and low temperatures, high salinity, and high or low osmolarity are induced by several MAPK cascade and MAPK gene families in potato crop. The MAPK cascade is synchronized by numerous mechanisms, including not only transcriptional regulation but also through posttranscriptional regulation such as protein–protein interactions. In this review, we will discuss the recent detailed functional analysis of certain specific MAPK gene families which are involved in resistance to various biotic and abiotic stresses in potato. This study will also provide new insights into functional analysis of various MAPK gene families in biotic and abiotic stress response as well as its possible mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

MAPK:

KKMitogen-activated protein kinase kinase kinase

MAPK:

KMitogen-activated protein kinase kinase

MAPK:

Mitogen-activated protein kinase

PTM:

Posttranslational modification

ROS:

Reactive oxygen species

References

  • Abele D, HeiseZortner KHO, Puntarulo S (2002) Temperature dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J of Exp Biol 205:1831–1841

    Article  CAS  Google Scholar 

  • Agarwal PK, Gupta K, Jha B (2010) Molecular characterization of the Salicornia brachiata SbMAPKK gene and its expression by abiotic stress. Mol Biol Rep 37:981–986

    Article  CAS  PubMed  Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2009) Potato responds to salt stress by increased activity of antioxidant enzymes. J Integr Plant Biol 51:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Agrawal GK, Rakwal R, Iwahashi H (2002) Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun 294:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Agrawal GK, Iwahashi H, Rakwal R (2003) Rice MAPKs. Biochem Biophys Res Commun 302:171–180

    Article  CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L et al (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Asif MH, Lakhwani D, Pathak S, Bhambhani S, Bag SK, Trivedi PK (2013) Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening. Funct Integr Genom 14:161–175

    Article  Google Scholar 

  • Bach S, Yada RY, Bizimungu B, Sullivan JA (2012) Genotype by environment interaction effects on fibre components in potato (Solanum tuberosum L.). Euphytica 187:77–86

    Article  Google Scholar 

  • Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi G, Zhou Z, Wang W, Li L, Rao S, Wu Y et al (2018) Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30:1543–1561. https://doi.org/10.1105/tpc.17.00981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanco FA, Zanetti ME, Casalongue CA, Daleo GR (2006) Molecular characterization of a potato MAP kinase transcriptionally regulated by multiple environmental stresses. Plant Physiol Biochem PPB/Societe Francaise De Physiologie Vegetale 44:315–322

    Article  CAS  Google Scholar 

  • Braunsdorf C, Mailänder-Sánchez D, Schaller M (2016) Fungal sensing of host environment. Cell Microbiol 18:1188–1200. https://doi.org/10.1111/cmi.12610

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Zhu H, Ke D, Cai K, Wang C, Gou H, Hong Z, Zhang Z (2012) A MAP Kinase Kinase interacts with SymRK and regulates nodule organogenesis in Lotus japonicus. Plant Cell 24:823–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Sun H, Wang F, Yue D, Shen X, Sun W, Zhang X, Yang X (2020) Genome-wide identification of MAPK cascade genes reveals the GhMAP3K14-GhMKK11-GhMPK31 pathway is involved in the drought response in cotton. Plant Molecular Biology 103:211–223. https://doi.org/10.1007/s11103-020-00986-0

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhou Y, Zhang Q, Liu Q, Li L, Sun C, Wang K, Wang Y, Zhao M, Li H et al (2020) Structural variation, functional differentiation and expression characteristics of the AP2/ERF gene family and its response to cold stress and methyl jasmonate inPanax ginseng C.A. Meyer. PLoS ONE 15:e0226055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12:444–451

    Article  CAS  PubMed  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Xu Y, Ma Q (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira ML, Silva CCL, Abe VY, Costa MG, Cernadas RA, Benedetti CE (2013) Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase. Mol Plant Microbe Interact 26:1190–1199. https://doi.org/10.1094/MPMI-04-13-0122-R

    Article  CAS  PubMed  Google Scholar 

  • Dóczi R, Hatzimasoura E, Bilooei SF, Ahmad Z, Ditengou FA, López-Juez E, Palme K, Bögre L (2019) The MKK7-MPK6MAP kinase module is a regulator of meristem quiescence or active growth in arabidopsis. Front Plant Sci 10:202

    Article  PubMed  PubMed Central  Google Scholar 

  • Du Y, Chen X, Guo Y, Zhang X, Zhang H, Li F et al (2021) Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. New Phytol 229:501–515. https://doi.org/10.1111/nph.16861

    Article  CAS  PubMed  Google Scholar 

  • FAOstat, Food and Agriculture Organization. Available online: http://www.fao.org/Faostat/En/#data.qc (accessed on 2020).

  • Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55(399):1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Gao HJ, Yang HY, Bai JP, Liang XY, Lou Y, Zhang JL, Wang D, Zhang JL, Niu SQ, Chen YL (2015) Ultra structural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress. Front Plant Sci 5:787–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerbens-Leenes W, Hoekstra AY, van der Meer TH (2009) The water footprint of bioenergy. PNAS 106(25):10219–10223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbel M, Zaidi I, Ebel C, Hanin M (2019) Differential regulation of the durum wheat MAPK phosphatase 1 by calmodulin, bivalent cations and possibly mitogen activated protein kinase 3. Plant Physiol Biochem [j] 135:242–252. https://doi.org/10.1016/j.plaphy.2018.12.016

    Article  CAS  Google Scholar 

  • Gomi K, Ogawa D, Katou S, Kamada H, Nakajima N, Saji H (2005) A mitogen-activated protein kinase NtMPK4 activated by SIPKK is required for jasmonic acid signaling and involved in ozone tolerance via stomatal movement in tobacco. Plant Cell Physiol 46:1902–1914

    Article  CAS  PubMed  Google Scholar 

  • Goyal RK, Tulpan D, Chomistek N, Fundora DG-P, West C, Ellis BE, Frick M, Laroche A, Foroud NA (2018) Analysis of MAPK and MAPKK gene families in wheat and related Triticeae species. BMC Genom 19:178

    Article  Google Scholar 

  • Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, qBarbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198. https://doi.org/10.1016/j.tplants.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  • Hamel LP, Nicole MC, Duplessis S, Ellis BE (2012) Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24:1327–1351. https://doi.org/10.1105/tpc.112.096156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haritha H (2017) Evaluation of salinity and water stress tolerance in potato genotypes: biochemical characterization of the tolerance response; University of Agricultural Sciences GKVK: Bengaluru. India Plant J 64:379–391. https://doi.org/10.1111/j.1365-313X.2010.04333.x

    Article  CAS  Google Scholar 

  • He X, Wang C, Wang H, Li L, Wang C (2020) The function of MAPK cascades in response to various stresses in horticultural plants. Front Plant Sci 11:952. https://doi.org/10.3389/fpls.2020.00952

    Article  PubMed  PubMed Central  Google Scholar 

  • Hijmans RJ (2003) The effect of climate change on global potato production. Am J Potato Res 80:271–279

    Article  Google Scholar 

  • Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169(4):746–752

    Article  CAS  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A et al (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308. https://doi.org/10.1016/S1360-1385(02)02302-6

    Article  CAS  Google Scholar 

  • Iftikhar H, Naveed N, Virk N, Bhatti MF, Song F (2017) In silico analysis reveals widespread presence of three gene families, MAPK, MAPKK and MAPKKK, of the MAPK cascade from crop plants of Solanaceae in comparison to the distantly-related syntenic species from Rubiaceae, coffee. Peer J 5:e3255. https://doi.org/10.7717/peerj.3255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ijaz B, Formentin E, Ronci B, Locato V, Barizza E, Hyder MZ, Schiavo FL, Yasmin T (2019) Salt tolerance in indica rice cell cultures depends on a fine tuning of ROS signalling and homeostasis. PLoS ONE 14:e0213986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A (2018) Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci 9:1387. https://doi.org/10.3389/fpls.2018.01387

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Wen F, Cao J, Li P, She J, Chu Z (2015) Genome-wide exploration of the molecular evolution and regulatory network of mitogen activated protein kinase cascades upon multiple stresses in Brachypodium distachyon. BMC Genomics 16(228):853

    Google Scholar 

  • Jiang C, Zhang X, Liu H, Xu JR (2018) Mitogen-activated protein kinase signaling in plant pathogenic fungi. Plos Pathog 14:e1006875. https://doi.org/10.1371/journal.ppat.1006875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonak C, Okresz L, Bogrw L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    Article  CAS  PubMed  Google Scholar 

  • Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD, Miller W et al (2007) Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proc Natl Acad Sci USA 104:12205–12210. https://doi.org/10.1073/pnas.0700344104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katerji N, JWv H, Hamdy A, Mastrorilli M (2000) Salt tolerance classification of crops according to soil salinity and to water stress day index. Agric Water Manag 43:99–109

    Article  Google Scholar 

  • Katou S, Yamamoto A, Kazuhito Kawakita HY, Doke N (2003) Functional analysis of potato mitogen-activated protein kinase kinase, StMEK1. J Gen Plant Pathol 69:161–168. https://doi.org/10.1007/s10327-002-0030-y

    Article  CAS  Google Scholar 

  • Kazuya-Ichimura MG, Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  Google Scholar 

  • Khan MA, Gemenet DC, Villordon A (2016) Root system architecture and abiotic stress tolerance: current knowledge in root and tuber crops. Front Plant Sci 7:1584–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Park S-C, Ji CY, Park S, Jeong JC, Lee H-S, Kwak S-S (2016) Molecular characterization of biotic and abiotic stress-responsive MAP kinase genes, IbMPK3 and IbMPK6, in sweet potato. Plant Physiol Biochem 108:37–48

    Article  CAS  PubMed  Google Scholar 

  • Kissoudis C, van de Wiel C, Visser RG, van der Linden G (2014) Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front Plant Sci 5:207. https://doi.org/10.3389/fpls.2014.00207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kogovsek P, Ravnikar M (2013) Physiology of the potato-Potato virus Y interaction. In: Lu¨ttge U, Beyschlag W, Francis D, Cushman J, editors. Progress in Botany. Berlin, Heidelberg: Springer Berlin Heidelberg, 74:101–133.

  • Komis G, Šamajová-Ovečka M, Šamaj J (2018) Cell and developmental biology of plant mitogen-activated protein kinases. Annu Rev Plant Biol 69:237–265

    Article  CAS  PubMed  Google Scholar 

  • Kong F, Wang J, Cheng L, Liu S, Wu J, Peng Z, Lu G (2012) Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum. Gene 499:108–120

    Article  CAS  PubMed  Google Scholar 

  • Lazar A, Coll A, Dobnik D, Baebler Sˇ, Bedina-Zavec A et al (2014) Involvement of potato (Solanum tuberosum L) MKK6 in response to Potato virus Y. PLoS ONE 9(8):e104553. https://doi.org/10.1371/journal.pone.0104553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HK, Cho SK, Son O, Xu Z, Hwang I, Kim WT (2009) Drought stress-induced Rma1H1, a RING membrane anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21:622–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy D, Veilleux RE (2007) Adaptation of potato to high temperatures and salinity a review. Am J Potato Res 84:487–506

    Article  Google Scholar 

  • Li Z, Yue H, Xing D (2012) MAP kinase 6-mediated activation of vacuole processing enzyme modulates heat shock-induced programmed cell death in Arabidopsis. New Phytol 195:85–96

    Article  CAS  PubMed  Google Scholar 

  • Lian W-W, Tang Y-M, Gao S-Q, Zhang Z, Zhao X, Zhao C-P (2012) Phylogenetic analysis and expression patterns of the MAPK gene family in wheat (Triticum aestivum L.). J Integr Agric 11:1227–1235

    Article  CAS  Google Scholar 

  • Link V, Sinha AK, Vashista P, Hofmann MG, Proels RK, Ehness R, Roitsch T (2002) A heat-activated MAP kinase in 856 tomato: a possible regulator of the heat stress response. FEBS Lett 531:179–183

    Article  CAS  PubMed  Google Scholar 

  • Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS et al (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71:614–618

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zhang D, Wang L, Li D (2013) Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep 31:1446–1460

    Article  CAS  Google Scholar 

  • López-Bucio JS, Dubrovsky JG, Raya-González J, Ugartechea-Chirino Y, López-Bucio J, de Luna-Valdez LA, Ramos-Vega M, León P, Guevara-García AA (2014) Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. J Exp Bot 65:169–183. https://doi.org/10.1093/jxb/ert368

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Khalid S, Abdullah M, Ahmed Z, Shah N-K-M, Ghafoor A, Du X (2020) Insights into drought stress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells 9:105

    Article  CAS  Google Scholar 

  • Medina J, Catala R, Salinas J (2011) The CBFs: three Arabidopsis transcription factors to cold acclimate. Plant Sci 180(3–792):11

    Google Scholar 

  • Meise P, Seddig S, Uptmoor R, Ordon F, Schum A (2019) Assessment of yield and yield components of starch potato cultivars (Solanum tuberosum L.) under nitrogen deficiency and drought stress conditions. Potato Res 62:193–220. https://doi.org/10.1007/s11540-018-9407-y

    Article  CAS  Google Scholar 

  • Melech-Bonfil S, Sessa G (2010) Tomato MAPKKK epsilon is a positive regulator of cell-death signaling networks associated with plant immunity.

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    Article  CAS  PubMed  Google Scholar 

  • Menges M, Doczi R, Okresz L, Morandini P, Mizzi L, Soloviev M et al (2008) Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways. New Phytol 179:643–662

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ [j] 33:453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

    Article  CAS  Google Scholar 

  • Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452:55–68

    Article  CAS  PubMed  Google Scholar 

  • Mohammed W, Burga S (2015) Evaluation of potato (Solanum tuberosum L.) genotypes for yield and tuber quality related traits at Lowland, Dire Dawa, Eastern Ethiopia Science. Technol Arts Res J 4:1–10. https://doi.org/10.4314/star.v4i3.1

    Article  Google Scholar 

  • Morris P (2001) MAP kinase signal transduction pathways in plants. New Phytol 151:67–89

    Article  CAS  PubMed  Google Scholar 

  • Muhammad T, Zhang J, Ma Y, Li Y, Zhang F, Zhang Y, Liang Y (2019) Overexpression of a 646 mitogen-activated protein kinase SlMAPK3 positively regulates tomato tolerance to cadmium and drought stress. Molecules 24:556

    Article  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Passioura J-B, Colmer T-D, Byrt C-S (2020) Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytol 225:1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Nakagami H, Kiegerl S, Hirt H (2004) OMTK1, a novel MAPKKK, channels oxidative stress signaling through direct MAPK interaction. J Biol Chem 279:26959–26966

    Article  CAS  PubMed  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346

    Article  CAS  PubMed  Google Scholar 

  • Nehanjali P, Kunwar HS, Deepika S, Lal S, Pankaj K, Nanjundan J, et al (2017) Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotech 7(4):239. https://doi.org/10.1007/s13205-017-0870-y

  • Patela RM, Prashera SO, Donnellyb D, Bonnell RB (2001) Effect of initial soil salinity and sub irrigation water salinity on potato tuber yield and size. Agric Water Manag 46:231–239

    Article  Google Scholar 

  • Pedley KF, Martin GB (2004) Identification of MAPKs and their possible MAPK kinase activators involved in the Pto-mediated defense response of tomato. J Biol Chem 279:49229–49235. https://doi.org/10.1074/jbc.M410323200

    Article  CAS  PubMed  Google Scholar 

  • Pedley KF, Martin GB (2005) Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol 8:541–547

    Article  CAS  PubMed  Google Scholar 

  • Peng LX, Gu LK, Zheng CC, Li DQ, Shu HR (2006) Expression of MaMAPK gene in seedlings of Malus L. under water stress. Acta Biochim Biophys Sin (shanghai) 38:281–286

    Article  CAS  Google Scholar 

  • Piao Y, Jin K, He Y, Liu J, Liu S, Li X et al (2018) Genome-wide identification and role of MKK and MPK gene families in clubroot resistance of Brassica rapa. PLoS ONE 13:e0191015. https://doi.org/10.1371/journal.pone.0191015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popescu SC, Popescu GV, Bachan S, Zhang Z, Gerstein M, Snyder M, Dinesh-Kumar SP (2009) MAPK target networks in Arabidopsis thaliana revealed using functional protein micro-arrays. Genes Dev 23:80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quint M, Delker C, Franklin K-A, Wigge P-A, Halliday K-J, van-Zanten M (2016) Molecular and genetic control of plant thermo morphogenesis. Nat Plants 2:15190

    Article  CAS  PubMed  Google Scholar 

  • Rai MK, Kalia RK, Singh R, Gangola MP, Dhawan AK (2011) Developing stress tolerant plants through in vitro selection, an overview of the recent progress. Environ Exp Bot 71:89–98

    Article  Google Scholar 

  • Rehman N, Khan MR, Abbas Z, Rafique RS, Zaynab M, Qasim M, Noor S, Inam S, Ali GM (2020) Functional characterization of mitogen-activated protein kinase kinase (MAPKK) gene in halophytic Salicornia europaea against salt stress. Environ Exp Bot 171:103934

    Article  CAS  Google Scholar 

  • Rodriguez M-C, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Article  CAS  PubMed  Google Scholar 

  • Rohila JS, Yang Y (2009) Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol 49:751–759

    Article  Google Scholar 

  • Rudack K, Seddig S, Sprenger H, Köhl K, Uptmoor R, Ordon F (2017) Drought stress-induced changes in starch yield and physiological traits in potato. J Agron Crop Sci 203:494–505. https://doi.org/10.1111/jac.12224

    Article  CAS  Google Scholar 

  • Šamajová O, Plı́hal O, Al-Yousif M, Hirt H, Š-amaj J (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31:118–128

    Article  PubMed  Google Scholar 

  • Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ et al (2006) Phosphorylation of NtMAP65-1 by a MAP kinase down regulates its activity of microtubule and stimulates progression of cytokinesis of tobacco cells. Genes Dev 20:1004–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang X, Dong G, Zhang H, Zhang L, Yu X, Li J, Wang X, Yue B, Zhao Y, Wu Y (2016) Polybrominated diphenyl ethers (PBDEs) and indicator polychlorinated biphenyls (PCBs) in various marine fish from Zhoushan fishery, China. Food Control 67:240–246

    Article  CAS  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203. https://doi.org/10.4161/psb.6.2.14701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suri SS, Dhindsa RS (2008) A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. Plant Cell Environ 31:218–226

    Article  CAS  PubMed  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5(11):1370–1378. https://doi.org/10.4161/psb.5.11.13020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi Y, Soyano T, Kosetsu K, Sasabe M, Machida Y (2010) HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant Cell Physiol 51:1766–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatebayashi K, Takekawa M, Saito H (2003) A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J 22:3624–3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152. https://doi.org/10.1016/j.molcel.2004.06.023

    Article  CAS  PubMed  Google Scholar 

  • Virk N, Liu BO, Zhang H, Li X, Zhang Y, Li D et al (2013) Tomato SlMPK4 is required for resistance against Botrytis cinerea and tolerance to drought stress. Acta Physiol Plant 35:1211–1221. https://doi.org/10.1007/s11738-012-1160-2

    Article  CAS  Google Scholar 

  • Virk N, Li D, Tian L, Huang L, Hong Y, Li X, Zhang Y, Liu B, Zhang H, Song F (2015) Arabidopsis Raf-like mitogen-activated protein kinase kinase kinase gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses. PLoS ONE 10:e0133975

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Lovato A, Polverari A, Wang M, Liang Y-H, Ma Y-C (2014) Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera). BMC Plant Biol 14:219

  • Wang L, Liu Y, Feng S, Yang J, Li D, Zhang J (2017) Roles of plasmalemma aquaporin gene StPIP1 in enhancing drought tolerance in potato. Front Plant Sci 8:616. https://doi.org/10.3389/fpls.2017.00616

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Chen Y, Wu X, Long Z, Sun C, Wang H et al (2018) A potato Strubbelig-receptor family member, StLRPK1, associates with StSERK3A/BAK1 and activates immunity. J Exp Bot 69:5573–5586. https://doi.org/10.1093/jxb/ery310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Schuck S, Wu J, Yang P, Döring AC, Zeier J et al (2018) A MPK3/6-WRKY33-ALD1-pipecolic acid regulatory loop contributes to systemic acquired resistance. Plant Cell 30:2480–2494. https://doi.org/10.1105/tpc.18.00547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Guo H, He X, Zhang S, Wang J, Wang L et al (2019) Scaffold protein GhMORG1 enhances the resistance of cotton to Fusarium oxysporum by facilitating the MKK6-MPK4 cascade. Plant Biotechnol J 18:1421–1433. https://doi.org/10.1111/pbi.13307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei C, Liu X, Long D, Guo Q, Fang Y, Bian C, Zhang D, Zeng Q, Xiang Z, Zhao A (2014) Molecular cloning and expression analysis of mulberry MAPK gene family. Plant Physiol Biochem 77:108–116

    Article  CAS  PubMed  Google Scholar 

  • Wen JQ, Oono K, Imai R (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wimalasekera R, Scherer GFE (2018) Chapter 21 - Involvement of mitogen-activated protein kinases in abiotic stress responses in plants. In: Ahmad P, Ahanger MA, Singh VP, Tripathi DK, Alam P, Alyemeni MN (eds) Plant metabolites and regulation under environmental stress. Academic Press 389–395.

  • Wu J, Wang J, Pan C, Guan X, Wang Y, Liu S, He Y, Chen J, Chen L, Lu G (2014) Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. PLoS ONE 9:e103032

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie G, Kato H, Imai R (2012) Biochemical identification of the OsMKK6-OsMPK3 signaling pathway for chilling stress tolerance in rice. Biochem J 443:95–102

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Chen WH, Jia W, Zhang J (2015) Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signaling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. J Exp Bot 66:5971–5981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Chua NH (2012) Dehydration stress activates Arabidopsis MPK6 to signal DCP1 phosphorylation. EMBO J 31:1975–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620

    Article  CAS  PubMed  Google Scholar 

  • Yamamizo C, Kuchimura K, Kobayashi A, Katou S, Kawakita K, Jones JDG et al (2006) Rewiring mitogen-activated protein kinase cascade by positive feedback confers potato blight resistance. Plant Physiol 140:681–692. https://doi.org/10.1104/pp.105.074906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Wang L, Ding Z, Tie W, Ding X, Zeng C (2016) Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family in cassava. Front Plant Sci 7:1294

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen activate protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA 98:741–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JW, Zhu X, Li SG, Tang X (2019) Zhang N. Si H.J. A novel potato microRNA stu-miR856 regulates mitogen-activated protein kinase genes contributing to drought tolerance. Biol Plant 63: 618–626. https://doi.org/10.32615/bp.2019.067

  • Yin Y-X, Guo W-L, Zhang Y-L, Ji J-J, Xiao H-J, Yan F (2014) Cloning and characterization of a pepper aquaporin, CaAQP, which reduces chilling stress in transgenic tobacco plants. Plant Cell Tissue Organ Cult 118:431–444

    Article  CAS  Google Scholar 

  • Yuan B, Shen X, Li X, Xu C, Wang S (2007) Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta 226:953–960. https://doi.org/10.1007/s00425-007-0541-z

    Article  CAS  PubMed  Google Scholar 

  • Zaheer K, Akhtar MH (2016) Potato production, usage, and nutrition—a review Crit Rev Food Sci Nutr 56:711–721 https://doi.org/10.1080/10408398.2012.724479

  • Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, Zafar MH, Bahadar K (2018) Role of secondary metabolites in plant defense against pathogens. Microb Pathog 124:198–202

    Article  CAS  PubMed  Google Scholar 

  • Zaynab M, Sharif Y, Fatima M, Afzal MZ, Aslam MM, Raza MF, Anwar M, Sajjad N, Yang X, Li S (2020) CRISPR/Cas9 to generate plant immunity against pathogen. Microb Pathog 141:103996

    Article  CAS  PubMed  Google Scholar 

  • Zaynab M, Hussain A, Sharif Y, Fatima M, Sajid M, Rehman N, Yang X, Khan KA, Ghramh HA, Li S (2021a) Mitogen-activated protein kinase expression profiling revealed its role in regulating stress responses in potato (Solanum tuberosum). Plants 10:1371. https://doi.org/10.3390/plants10071371

  • Zaynab M, Sharif Y, Abbas S, Afzal MZ, Qasim M, Khalofah A, Ansari MJ, Khan KA, Tao L, Li S (2021b) Saponin toxicity as key player in plant defense against pathogens. Toxicon 193:21–27

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 11:520–527

    Article  Google Scholar 

  • Zhang X, Cheng T, Wang G, Yan Y, Xia Q (2012) Cloning and evolutionary analysis of tobacco MAPK gene family. Mol Biol Rep 40:1407–1415

    Article  PubMed  Google Scholar 

  • Zhang Z, Wu Y, Gao M, Zhang J, Kong Q, Liu Y et al (2012) Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11:253–263. https://doi.org/10.1016/j.chom.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Xu R, Luo X, Jiang Z, Shu H (2013) Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica. Gene 531:377–387

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Cao Y, Wang Z, Wang ZQ, Shi J, Liang X, Song W, Chen Q, Lai J, Jiang C (2017) A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize. New Phytol 2017:1–16

    CAS  Google Scholar 

  • Zhang Z, Li J, Li F, Liu H, Yang W, Chong K, Xu Y (2017) OsMAPK3 phosphorylates OsbHLH002/OsICE1 and inhibits its ubiquitination to activate OsTPP1 and enhances rice chilling tolerance. Dev Cell J 43:731–743

    Article  CAS  Google Scholar 

  • Zhang H, Li F, Li Z, Cheng J, Chen X, Wang Q, Joosten MHAJ, Shan W, Du Y (2021) Potato StMPK7 is a downstream component of StMKK1 and promotes resistance to the oomycete pathogen Phytophthora infestans. Mol Plant Pathol 00:1–14. https://doi.org/10.1111/mpp.13050

    Article  CAS  Google Scholar 

  • Zhao FY, Hu F, Zhang SY, Wang K, Zhang CR, Liu T (2013) MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environ Sci Pollut Res 20(5449):5460

    Google Scholar 

  • Zhu D, Chang Y, Pei T, Zhang X, Liu L, Li Y, Zhuang J, Yang H, Qin F, Song C, Ren D (2020) MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant J 102:747–760. https://doi.org/10.1111/tpj.14660

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Zhang N, Liu X, Wang S, Li S, Yang J, Wang F, Si H (2020) StMAPK3 controls oxidase activity, photosynthesis and stomatal aperture under salinity and osmosis stress in potato. Plant Physiol Biochem 156:167–177

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Zhang N, Liu X, Wang S, Li S, Yang J, Wang F, Si H (2020) StMAPK3 controls oxidase activity, photosynthesis and stomatal aperture under salinity and osmosis stress in potato. Plant Phy Biochem 156:167–177

    Article  CAS  Google Scholar 

  • Zhu X, Zhang N, Liu X, Wang X, Li S, Yang J, Wang F, Si H (2021) StMAPK3 controls oxidase activity, photosynthesis and stomatal aperture under salinity and osmosis stress in potato. Plant Phy and Biochem 156:157–167

    Google Scholar 

Download references

Funding

The research program was sponsored by National Natural Science Foundation of China (No. 31960444) and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University (No. GSCS-2019-Z03).

Author information

Authors and Affiliations

Authors

Contributions

Y.M and X.Z equally contributed to the article regarding original draft preparation; N.Z helped in review process and A.R reviewed the article and prepared the figures; M.M.T provided technical assistance. H.S supervised the study. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Huaijun Si.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Institutional review board statement

Not applicable. The experiments described in this manuscript do not involve human participants.

Informed consent

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majeed, Y., Zhu, X., Zhang, N. et al. Functional analysis of mitogen-activated protein kinases (MAPKs) in potato under biotic and abiotic stress. Mol Breeding 42, 31 (2022). https://doi.org/10.1007/s11032-022-01302-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-022-01302-y

Keywords

Navigation