Skip to main content
Log in

Mapping and identifying candidate genes involved in the novel fasciculate inflorescence in pepper (Capsicum annuum L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

As a key determinant affecting yield and quality in pepper, inflorescence architecture is a significant feature of the ornamental plants. In our present study, a new mutant with fasciculate inflorescence named CL74 was derived from our germplasm resources. Genetic analysis of CL74 indicated that it was different from the fasciculate (fa) mutant, and its fasciculate inflorescence trait was controlled by a single recessive nuclear gene. A large F2 population was constructed and used for bulked segregant analysis (BSA) and linkage analysis. These findings revealed that the candidate gene was mapped to a segment with a physical distance of approximately 998 kb between Indel-197064077 and Indel-198110136. There were two agamous-like MADS-box protein genes Capanan11g001832 and Capanan11g001834 in the candidate region. Besides, two single nucleotide polymorphisms (SNPs) existed on the coding region of Capanan11g001832 in the CL74 mutant compared with the single-flower plants. In addition, the two SNPs were verified and fully co-segregated with fasciculate inflorescence phenotype in the F2 individuals. Collectively, Capanan11g001832 was a strong candidate gene for the fasciculate inflorescence. Furthermore, transcriptome analysis indicated that three WUSCHEL-like genes (Capana00g000667, Capana06g000476, and Capana11g000671) were downregulated and CLV1 (Capana04g000175) was upregulated in CL74. Moreover, we speculated that there was a complex relationship among the genes Capanan11g001832, Capanan11g001834, the three WUSCHEL-like genes, and CLV1, and these genes might co-regulate the formation of fasciculate inflorescence in pepper. Our study laid the foundation for the selection of high-yield, mechanized harvesting, or ornamental varieties of pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barton MK (2010) Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol 341:95–113

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110–115

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carles CC, Fletcher JC (2003) Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 8:394–401

    Article  CAS  PubMed  Google Scholar 

  • Carmel-Goren L, Liu YS, Lifschitz E, Zamir D (2003) The SELF-PRUNING gene family in tomato. Plant Mol Biol 52:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Clark SE (2001) Meristems: start your signaling. Curr Opin Plant Biol 4:28–32

    Article  CAS  PubMed  Google Scholar 

  • Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397–418

    Article  CAS  PubMed  Google Scholar 

  • Cohen O, Borovsky Y, Davidschwartz R, Paran I (2012) CaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper. J Exp Bot 63:4947–4957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen O, Borovsky Y, David-Schwartz R, Paran I (2014) Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum). New Phytol 202:1014–1023

    Article  CAS  PubMed  Google Scholar 

  • Colasanti J, Muszynski M (2009) The maize floral transition. Handbook of maize its biology, pp 41–55

    Book  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U S A 103:6398–6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elitzur TN, Hadas BY, Pekker I, Eshed Y, Paran I (2009) Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING. J Exp Bot 60:869–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard L, Mcsteen P, Doebley J, Hake S (2002) Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162:1927–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Je BI, Gruel J, Lee YK, Bommert P, Arevalo ED, Eveland AL, Wu Q, Goldshmidt A, Meeley R, Bartlett M (2016) Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 48:785–791

    Article  CAS  PubMed  Google Scholar 

  • Jeifetz D, David-Schwartz R, Borovsky Y, Paran I (2011) CaBLIND regulates axillary meristem initiation and transition to flowering in pepper. Planta 234:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Knaap EVD, Kim JH, Kende H (2000) A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenhard M, Bohnert A, Jürgens G, Laux T (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Tao CJGO, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller R, Borghi L, Kwiatkowska D, Laufs PR (2006) Dynamic and compensatory responses of Arabidopsis shoot and floral meristems to CLV3 signaling. Plant Cell 18:1188–1198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Peter B, Byoung Il J, Alexander G, David J (2013) The maize gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 502:555

    Article  CAS  Google Scholar 

  • Pnueli L, Carmelgoren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    Article  CAS  PubMed  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y, Yang Y, Wu Z, Mao L, Wu H, Ling-Hu C, Zhou H, Lin H, Gonzalez-Morales S, Trejo-Saavedra DL, Tian H, Tang X, Zhao M, Huang Z, Zhou A, Yao X, Cui J, Li W, Chen Z, Feng Y, Niu Y, Bi S, Yang X, Li W, Cai H, Luo X, Montes-Hernandez S, Leyva-Gonzalez MA, Xiong Z, He X, Bai L, Tan S, Tang X, Liu D, Liu J, Zhang S, Chen M, Zhang L, Zhang L, Zhang Y, Liao W, Zhang Y, Wang M, Lv X, Wen B, Liu H, Luan H, Zhang Y, Yang S, Wang X, Xu J, Li X, Li S, Wang J, Palloix A, Bosland PW, Li Y, Krogh A, Rivera-Bustamante RF, Herrera-Estrella L, Yin Y, Yu J, Hu K, Zhang Z (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci U S A 111:5135–5140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615

    Article  CAS  PubMed  Google Scholar 

  • Saghaimaroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81:8014–8018

    Article  CAS  Google Scholar 

  • Seungill K, Minkyu P, Seon-In Y, Yong-Min K, Je Min L, Hyun-Ah L, Eunyoung S, Jaeyoung C, Kyeongchae C, Ki-Tae K (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  Google Scholar 

  • Somssich M, Je BI, Simon R, Jackson D (2016) CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:3238–3248

    Article  CAS  PubMed  Google Scholar 

  • Sussex IM, Kerk NM (2001) The evolution of plant architecture. Curr Opin Plant Biol 4:33–37

    Article  CAS  PubMed  Google Scholar 

  • Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D (2001) The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev 15:2755–2766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Erratum: differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010a) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010b) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26(1):136–138

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Smith SM, Li J (2018) Genetic regulation of shoot architecture. Annu Rev Plant Biol 69:437–468

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky MF, Hong M, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39

    Article  CAS  PubMed  Google Scholar 

  • Yeager AF (1927) Determinate growth in the tomato. J Hered 18:263–265

    Article  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14–R14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang D, Yuan Z (2014) Molecular control of grass inflorescence development. Annu Rev Plant Biol 65:553–578

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Hu W, Wang L, Lin C, Cong B, Sun C, Luo D (2005) TFL1 / CEN -like genes control intercalary meristem activity and phase transition in rice. Plant Sci 168:1393–1408

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by China Agriculture Research System (Grant No. CARS-24-A-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Ou, Wenchao Chen or Xuexiao Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Junheng Lv, Yuhua Liu and Zhoubin Liu contributed equally to this work.

Electronic supplementary material

Fig. S1

Alignment of the gene fa gene coding sequences between the CL74 mutant and fa mutant (PNG 357 kb)

High Resolution Image (TIF 78 kb)

Fig. S2

qRT-PCR-based expression analysis of genes in the candidate region (PNG 333 kb)

High Resolution Image (TIF 311 kb)

Fig. S3

Alignment of the gene Capana11g001832 coding and amino acid sequences between the wild type and mutant type plants (PNG 2850 kb)

High Resolution Image (TIF 183 kb)

Fig. S4

(a) GO enrichment analysis for differentially expressed genes between CL74 and L816; (b) Scatter plot of KEGG pathway enrichment statistics for differentially expressed genes between CL74 and L816 (PNG 175 kb)

High Resolution Image (TIF 1.34 kb)

Fig. S5

qRT-PCR analysis of genes expression of significant related genes (PNG 228 kb)

High Resolution Image (TIF 21 kb)

Table S1

Primers used for map-based cloning (DOCX 16 kb)

Table S2

Primers for the detection of the expression level of selected genes (DOCX 16 kb)

Table S3

Phenotypic segregation identified by test for goodness-of-fit. (DOCX 15 kb)

Table S4

Gene function and expression level in the SAM of L816 and CL74 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Liu, Y., Liu, Z. et al. Mapping and identifying candidate genes involved in the novel fasciculate inflorescence in pepper (Capsicum annuum L.). Mol Breeding 39, 148 (2019). https://doi.org/10.1007/s11032-019-1050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1050-z

Keywords

Navigation