Skip to main content
Log in

Identification, mapping, and marker development of stem rust resistance genes in durum wheat ‘Lebsock’

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Wheat production in many wheat-growing regions is vulnerable to stem rust, caused by Puccinia graminis f. sp. tritici (Pgt). Several previous studies showed that most of the durum cultivars adapted to the upper Great Plains in the USA have good resistance to the major Pgt pathotypes, including the Ug99 race group. To identify the stem rust resistance (Sr) genes in the durum cultivar ‘Lebsock’, a tetraploid doubled haploid (DH) population derived from a cross between Lebsock and Triticum turgidum ssp. carthlicum PI 94749 was screened with the Pgt races TTKSK, TRTTF, and TTTTF. The stem rust data and the genotypic data previously developed were used to identify quantitative trait loci (QTL) associated with resistance. We identified one QTL each on chromosome arms 4AL, 6AS, 6AL, and 2BL. Based on marker and race-specification analysis, we postulated that the QTL on 4AL, 6AS, 6AL, and 2BL correspond to Sr7a, Sr8155B1, Sr13, and likely Sr9e, respectively. The results indicated that most of the US durum germplasm adapted to the upper Great Plains likely harbors the four major Sr genes characterized in this study. Among these genes, Sr8155B1 was recently identified and shown to be unique in that it conferred susceptibility to TTKSK but resistance to variant race TTKST. Two, three, and one thermal asymmetric reverse PCR (STARP) markers were developed for Sr7a, Sr8155-B1, and Sr13, respectively. Knowledge of the Sr genes in durum germplasm and the new STARP markers will be useful to pyramid and deploy multiple Sr genes in future durum and wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basnet BR, Singh S, Lopez-Vera EE, Huerta-Espino J, Bhavani S, Jin Y, Rouse MN, Singh RP (2015) Molecular mapping and validation of SrND643: a new wheat gene for resistance to the stem rust pathogen Ug99 race group. Phytopathology 105:470–476

    Article  PubMed  CAS  Google Scholar 

  • Bhavani S, Bansal UK, Hare RA, Bariana HS (2008) Genetic mapping of stem rust resistance in durum wheat cultivar ‘Arrivato’. Int J Plant Breed 2:23–26

    Google Scholar 

  • Chhetri M, Bansal U, Toor A, Lagudah E, Bariana H (2016) Genomic regions conferring resistance to rust diseases of wheat in a W195/BTSS mapping population. Euphytica 209:637–649

    Article  CAS  Google Scholar 

  • Chu C-G, Chao S, Friesen TL, Faris JD, Zhong S, Xu SS (2010) Identification of novel tan spot resistance QTLs using an SSR-based linkage map of tetraploid wheat. Mol Breed 25:327–338

    Article  CAS  Google Scholar 

  • Chu C-G, Tan CT, Yu G-T, Zhong S, Xu SS, Yan L (2011) A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.). G3 (Bethesda) 1:637–645

    Article  CAS  Google Scholar 

  • Dubin HJ, Brennan JP (2009) Combating stem and leaf rust of wheat historical perspective, impacts, and lessons learned. Paper on Millions fed: proven successes in agricultural development, IFPRI, Washington D.C., IFPRI Discussion paper 00910. http://www.ifpri.org/sites/default/files/publications/ifpridp00910.pdf. Accessed 6 Sept 2017

  • Dunckel SM, Olson EL, Rouse MN, Bowden RL, Poland JA (2015) Genetic mapping of race-specific stem rust resistance in the synthetic hexaploid W7984 × Opata M85 mapping population. Crop Sci 55:2580–2588

    Article  CAS  Google Scholar 

  • Elias EM, Manthey FA (2007a) Registration of ‘Alkabo’ durum wheat. J Plant Reg 1:10–11

    Article  Google Scholar 

  • Elias EM, Manthey FA (2007b) Registration of ‘Divide’ durum wheat. J Plant Reg 1:7–8

    Article  Google Scholar 

  • Elias EM, Manthey FA (2007c) Registration of ‘Grenora’ durum wheat. J Plant Reg 1:8–9

    Article  Google Scholar 

  • Elias EM, Manthey FA (2012) Registration of ‘Tioga’ durum wheat. J Plant Reg 7:69–74

    Article  Google Scholar 

  • Elias EM, Manthey FA (2016) Registration of ‘Joppa’ durum wheat. J Plant Reg 1:139–144

    Article  Google Scholar 

  • Elias EM, Miller JD (1998) Registration of ‘Ben’ durum wheat. Crop Sci 38:895

    Article  Google Scholar 

  • Elias EM, Miller JD (2000) Registration of ‘Maier’ durum wheat. Crop Sci 40:1498–1499

    Google Scholar 

  • Elias EM, Miller JD, Manthey FA (2001) Registration of ‘Lebsock’ durum wheat. Crop Sci 41:2007–2008

    Article  Google Scholar 

  • Elias EM, Manthey FA, AbuHammad WA (2014) Registration of ‘Carpio’ durum wheat. J Plant Reg 9:78–82

    Article  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hotspot region in wheat. Genetics 154:823–835

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fetch T, Zegeye T, Park RF, Hodson D, Wanyera R (2016) Detection of wheat stem rust races TTHSK and PTKTK in the Ug99 race group in Kenya in 2014. Plant Dis 100:1495. https://doi.org/10.1094/PDIS-11-15-1356-PDN

    Article  Google Scholar 

  • Friesen TL, Chu C, Xu SS, Faris JD (2012) SnTox5-Snn5: a novel Stagonospora nodorum effector-wheat gene interaction and its relationship with the SnToxA-Tsn1 and SnTox3-Snn3-B1 interactions. Mol Plant Pathol 13:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Hayes HK, Ausemus ER, Stakman EC, Bailey CH, Wilson HK, Bamberg RH, Markley MC, Crim RF, Levine MN (1936) , University Farm, St. Paul

  • Jin Y (2005) Races of Puccinia graminis identified in United States during 2003. Plant Dis 89:1125–1127

    Article  Google Scholar 

  • Jin Y, Singh RP (2006) Resistance in U.S. wheat to recent eastern African isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Dis 90:476–480

    Article  CAS  Google Scholar 

  • Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Fetch T, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099

    Article  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  PubMed  CAS  Google Scholar 

  • Klindworth DL, Miller JD, Jin Y, Xu SS (2007) Chromosomal locations of genes for stem rust resistance in monogenic lines derived from tetraploid wheat accession ST464. Crop Sci 47:1441–1450

    Article  CAS  Google Scholar 

  • Klindworth DL, Saini J, Long Y, Rouse MN, Faris JD, Jin Y, Xu SS (2017) Physical mapping of DNA markers linked to stem rust resistance gene Sr47 in durum wheat. Theor Appl Genet 130:1135–1154

    Article  PubMed  CAS  Google Scholar 

  • Knott DR (1962) The inheritance of rust resistance: IX. The inheritance of resistance to races 15B and 56 of stem rust in the wheat variety Khapstein. Can J Plant Sci 42:415–419

    Article  Google Scholar 

  • Knott DR (1996) The transfer of stem rust resistance from the Ethiopian durum wheat St. 464 to common wheat. Can J Plant Sci 76:317–319

    Article  Google Scholar 

  • Knott DR, Anderson RG (1956) The inheritance of rust resistance. I. The inheritance of stem rust resistance in ten varieties of common wheat. Can J Agric Sci 36:174–195

    Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  • Long YM, Chao WS, Ma GJ, Xu SS, Qi LL (2017) An innovative SNP genotyping method adapting to multiple platforms and throughputs. Theor Appl Genet 130:597–607

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Vera EE, Nelson S, Singh RP, Basnet BR, Haley SD, Bhavani S, Huerta-Espino J, Xoconostle-Cazares BG, Ruiz-Medrano R, Rouse MN, Singh S (2014) Resistance to stem rust Ug99 in six bread wheat cultivars maps to chromosome 6DS. Theor Appl Genet 127:231–239

    Article  PubMed  CAS  Google Scholar 

  • Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage maps. Mol Breeding 30:1231–1235

    Article  CAS  Google Scholar 

  • McIntosh R (1972) Cytogenetical studies in wheat VI. Chromosome location and linkage studies involving Sr13 and Sr8 for reaction to Puccinia graminis f. sp. tritici. Aust J Biol Sci 25:765–774

    Article  Google Scholar 

  • McIntosh RA, Welling CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Australia, Sydney. Kluwer Publishers, Dordrecht

    Book  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/download.jsp. Accessed 10 May 2018. Committee for the National BioResource Project (NBRP)/KOMUGI, Japan

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2014) Catalogue of gene symbols for wheat: 2013–2014 supplement. http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2013.pdf. Accessed 10 May 2018. Committee for the National BioResource Project (NBRP)/KOMUGI, Japan

  • Nirmala J, Saini J, Newcomb M, Olivera P, Gale S, Klindworth D, Elias E, Talbert L, Chao S, Faris J, Xu S, Jin Y, Rouse MN (2017) Discovery of a novel stem rust resistance allele in durum wheat that exhibits differential reactions to Ug99 isolates. G3 (Bethesda) 7:3481–3490

    Article  Google Scholar 

  • Olivera Firpo PD, Newcomb M, Flath K, Sommerfeldt-Impe N, Szabo LJ, Carter M, Luster DG, Jin Y (2017) Characterization of Puccinia graminis f. sp. tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol 66:1258–1266

    Article  Google Scholar 

  • Olivera PD, Jin Y, Rouse M, Badebo A, Fetch T Jr, Singh RP, Yahyaoui A (2012) Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9e in a field stem rust screening nursery in Ethiopia. Plant Dis 96:623–628

    Article  Google Scholar 

  • Olivera P, Newcomb M, Szabo LJ, Rouse M, Johnson J, Gale S, Luster DG, Hodson D, Cox JA, Burgin L, Hort M, Gilligan CA, Patpour M, Justesen AF, Hovmøller MS, Woldeab G, Hailu E, Hundie B, Tadesse K, Pumphrey M, Singh RP, Jin Y (2015) Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in southern Ethiopia in 2013-14. Phytopathology 105:917–928

    Article  PubMed  Google Scholar 

  • Paarlberg PL, Seitzinger AH, Vo TT (2014) Estimating the potential economic impact of Puccinia graminis f. sp. tritici TTKS race (Ug99) (wheat stem rust).Working paper #14–1. Department of Agricultural Economics, Purdue University. http://ageconsearch.umn.edu/bitstream/164403/2/14-1.pdf. Accessed 25 Aug 2017

  • Periyannan SK, Qamar ZU, Bansal UK, Bariana HS (2014) Development and validation of molecular markers linked with stem rust resistance gene Sr13 in durum wheat. Crop Pasture Sci 65:74–79

    CAS  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203. https://doi.org/10.1094/PDIS.2000.84.2.203B

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  PubMed Central  Google Scholar 

  • Roelfs AP (1978) Estimated losses caused by rust in small grain cereals in the United States 1918–76. United States Department of Agriculture, Agricultural Research Service, Washington DC

    Google Scholar 

  • Roelfs AP, Martens JW (1988) An international system of nomenclature for Puccinia graminis f. sp. tritici. Phytopathology 78:526–533

    Article  Google Scholar 

  • Rouse MN, Wanyera R, Njau P, Jin Y (2011) Sources of resistance to stem rust race Ug99 in spring wheat germplasm. Plant Dis 95:762–766

    Article  Google Scholar 

  • Rouse MN, Nirmala J, Jin Y, Chao S, Fetch Jr TG, Pretorius ZA, Hiebert CW (2014) Characterization of Sr9h, a wheat stem rust resistance allele effective to Ug99. Theor Appl Genet 127:1681–1688

    Article  PubMed  CAS  Google Scholar 

  • Sears ER, Loegering WQ, Rodenhiser HA (1957) Identification of chromosomes carrying genes for stem rust resistance in four varieties of wheat. Agron J 49:208–212

    Article  Google Scholar 

  • Simons K, Abate Z, Chao S, Zhang W, Rouse M, Jin Y, Elias E, Dubcovsky J (2011) Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp. durum L.). Theor Appl Genet 122:649–658

    Article  PubMed  Google Scholar 

  • Singh RP, McIntosh RA (1986) Cytogenetical studies in wheat. XIV. Sr8b for resistance to Puccinia graminis tritici. Can J Genet Cytol 28:189–197

    Article  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR, Lan C, Hovmøller MS (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–884

    Article  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, Gustafson JP, Somers D, Chao S, Benscher D, Guedira-Browm G, Huttner E, Kilian A, McGuire PE, Ross K, Tanaka J, Wenzl P, Williams K, Qualset CO (2011) Reconstruction of the synthetic W7984 × Opata M85 wheat reference population. Genome 54:875–882

    Article  PubMed  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellie-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. USDA-ARS E617. Rev. ed. Scientific Journal Series Paper no. 4691. Minnesota Agric. Exp. Stn., St. Paul

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Turner MK, Jin Y, Rouse MN, Anderson JA (2016) Stem rust resistance in ‘Jagger’ winter wheat. Crop Sci 56:1719–1725

    Article  CAS  Google Scholar 

  • USDA-NASS (2006) North Dakota 2006 wheat varieties. United States Department of Agriculture, National Agricultural Statistics Service, North Dakota Field Office, Fargo

    Google Scholar 

  • USDA-NASS (2009) North Dakota 2009 wheat varieties. United States Department of Agriculture, National Agricultural Statistics Service, North Dakota Field Office, Fargo

    Google Scholar 

  • USDA-NASS (2015a) 2015 Wheat varieties frown in Montana. United States Department of Agriculture, National Agricultural Statistics Service, Montana Field Office, Helena https://www.nass.usda.gov/Statistics_by_State/Montana/Publications/Special_Interest_Reports/MT_Wheat_Var_07302015.pdf. Accessed 25 Aug 2017

    Google Scholar 

  • USDA-NASS (2015b) North Dakota 2015 wheat varieties. United States Department of Agriculture, National Agricultural Statistics Service, North Dakota Field Office, Fargo http://www.nd.gov/seed/news/whtvr15.pdf. Accessed 25 Aug 2017

    Google Scholar 

  • USDA-NASS (2017) North Dakota 2017 wheat varieties. United States Department of Agriculture, National Agricultural Statistics Service, North Dakota Field Office, Fargo http://www.ndwheat.com/uploads/resources/1009/whtvr17.pdf. Accessed 25 Aug 2017

    Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, IWGSC, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M-C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams ND, Gough FJ (1965) Inheritance of stem rust reaction in a Khapli emmer cross. Crop Sci 5:145–147

    Article  Google Scholar 

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  PubMed  CAS  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Bowden RL, Yu J, Carver BF, Bai G (2014) Association analysis of stem rust resistance in U.S. winter wheat. PLoS One 9:e103747. https://doi.org/10.1371/journal.pone.0103747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Chen S, Abate Z, Nirmala J, Rouse MN, Dubcovsky JD (2017) Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proc Natl Acad Sci 114:E9483–E9492 http://www.pnas.org/content/114/45/E9483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Funding

This research was supported in part by funds to S. S. X. provided through a grant from the Bill & Melinda Gates Foundation and UK Department for International Development to Cornell University for the Borlaug Global Rust Initiative (BGRI) Durable Rust Resistance in Wheat (DRRW) Project and the USDA-ARS CRIS Project No. 3060-21000-038-00D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments were performed in compliance with the current laws of the USA.

Additional information

Key message Four quantitative trait loci at gene loci Sr7, Sr9, Sr13, and Sr8155B1 were identified in durum ‘Lebsock’ and six new STARP markers were developed for the Sr7, Sr13, and Sr8155B1 regions.

Electronic supplementary material

Fig. S1

(PPTX 81 kb)

Fig. S2

(PPTX 2643 kb)

Table S1

(DOCX 14 kb)

Table S2

(DOCX 16 kb)

Table S3

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, J., Faris, J.D., Zhang, Q. et al. Identification, mapping, and marker development of stem rust resistance genes in durum wheat ‘Lebsock’. Mol Breeding 38, 77 (2018). https://doi.org/10.1007/s11032-018-0833-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0833-y

Keywords

Navigation