Skip to main content
Log in

LRRK1, a receptor-like cytoplasmic kinase, regulates leaf rolling through modulating bulliform cell development in rice

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Moderate leaf rolling is useful in improving photosynthetic efficiency and grain yields. Receptor-like cytoplasmic kinases (RLCKs) play important roles in plant growth and development. However, little is known about their functions in rice leaf morphogenesis. Here, we report the isolation and characterization of LRRK1 (leaf rolling receptor-like cytoplasmic kinase 1), an RLCK gene involved in the regulation of leaf rolling. LRRK1 was mainly localized at the plasma membrane and was phosphorylated in vivo. Overexpression of LRRK1 in rice reduced the size of bulliform cells at the adaxial cell layers, which caused in turn adaxially rolled leaves. However, deficiency of LRRK1 in the lrrk1 mutant did not result in a detectable visual phenotype. LRRK1 could upregulate the expression of negative regulators but downregulate the expression of positive regulators of bulliform cell development. These results indicate that LRRK1 is a negative regulator involved in the bulliform cell development. Furthermore, the panicle numbers in LRRK1-overexpressing plants increased significantly compared with the wild-type plants under a rational close planting condition. Taken together, these findings suggest that LRRK1 plays an important role in regulating leaf rolling and is a promising candidate gene for breeding rice with ideal plant architecture and improved grain yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RLCK:

Receptor-like cytoplasmic kinase

LRRK1:

Leaf rolling receptor-like cytoplasmic kinase 1

CIP:

Calf intestinal alkaline phosphatase

LRI:

Leaf rolling index

References

  • Alvarez JM, Rocha JF, Machado SR (2008) Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): structure in relation to function. Braz Arch Biol Techn 51:113–119

    Article  Google Scholar 

  • Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. J Biol Sci 15:415–428

    Google Scholar 

  • Bowman JL, Eshed Y, Baum SF (2002) Establishment of polarity in angiosperm lateral organs. Trends Genet 18:134–141

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Xie Q, Gao J, Wang W, Sun B, Liu B, Zhu H, Peng H, Zhao H, Liu C, Wang J, Zhang J, Zhang G, Zhang Z (2015) Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot 66:6047–6058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou DX (2007) The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol 144:121–133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eshed Y, Baum SF, Perea JV, Bowman JL (2001) Establishment of polarity in lateral organs of plants. Curr Biol 11:1251–1260

    Article  PubMed  CAS  Google Scholar 

  • Fang LK, Zhao FM, Cong YF, Sang XC, Du Q, Wang DZ, Li YF, Ling YH, Yang ZL, He GH (2012) Rolling-leaf14 is a 2OG-Fe(II) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves. Plant Biotechnol J 10:524–532

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser C, Yeh KC, Lagarias JC, Zhang H, Elich TD, Chory J (1999) PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284:1539–1541

    Article  PubMed  CAS  Google Scholar 

  • Govaerts YM, Jacquemoud S, Verstraete MM, Ustin SL (1996) Three-dimensional radiation transfer modeling in a dicotyledon leaf. Appl Opt 35:6585–6598

    Article  PubMed  CAS  Google Scholar 

  • Hernandez ML, Passas HJ, Smith LG (2000) Clonal analysis of epidermal patterning during maize leaf development. Dev Biol 216:646–658

    Article  Google Scholar 

  • Hibara K, Obara M, Hayashida E, Abe M, Ishimaru T, Satoh H, Itoh J, Nagato Y (2009) The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice. Dev Biol 334:345–354

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Zhu L, Zeng D, Gao Z, Guo L, Fang Y, Zhang G, Dong G, Yan M, Liu J, Qian Q (2010) Identification and characterization of NAR-ROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol 73:283–292

    Article  PubMed  CAS  Google Scholar 

  • Itoh J, Nonomura K, Ikeda K, Yamaki S, Inukai Y, Yamagishi H, Kitano H, Nagato Y (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47

    Article  PubMed  CAS  Google Scholar 

  • Jane WN, Chiang SHT (1991) Morphology and development of bulliform cells in Arundo formosana Hack. Taiwania Int J Life Sci 36:85–97

    Google Scholar 

  • Jeong DH, An S, Park S, Kang HG, Park GG, Kim SR, Sim J, Kim YO, Kim MK, Kim SR, Kim J, Shin M, Jung M, An G (2006) Generation of a flanking sequence-tag database for activation-tagging lines in japonica rice. Plant J 45:123–132

    Article  PubMed  CAS  Google Scholar 

  • Jurca ME, Bottka S, Fehér A (2008) Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). Plant Cell Rep 27:739–748

    Article  PubMed  CAS  Google Scholar 

  • Kidner CA, Timmermans MC (2007) Mixing and matching pathways in leaf polarity. Curr Opin Plant Biol 10:13–20

    Article  PubMed  Google Scholar 

  • Kim TW, Guan S, Burlingame AL, Wang ZY (2011) The CDG1 kinase mediates brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol Cell 43:561–571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lang YZ, Zhang ZJ, Gu XY, Yang JC, Zhu QS (2004) A physiological and ecological effect of crimpy leaf character in rice (Oryza sativa L.). II. Photosynthetic character, dry mass production and yield forming. Acta Agron Sin 30:883–887

    CAS  Google Scholar 

  • Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150:12–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Shi ZY, Li L, Shen GZ, Wang XQ, An LS, Zhang JL (2010) Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Mol Plant 3:807–817

    Article  PubMed  CAS  Google Scholar 

  • Lin JZ, Zhou B, Yang YZ, Mei J, Zhao XY, Guo XH, Huang XQ, Tang DY, Liu XM (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for Agrobacterium mediated transformation of indica rice. Plant Cell Rep 28:1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Ma X, Shan L, He P (2013) Big roles of small kinases: the complex functions of receptor–like cytoplasmic kinases in plant immunity and development. J Integr Plant Biol 55:1188–1197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Micol JL, Hake S (2003) The development of plant leaves. Plant Physiol 131:389–394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moon J, Hake S (2011) How a leaf gets its shape. Curr Opin Plant Biol 14:24–30

    Article  PubMed  CAS  Google Scholar 

  • O'Toole JC, Cruz RT (1980) Response of leaf water potential, stomatal resistance, and leaf rolling to water stress. Plant Physiol 65:428–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramegowda V, Basu S, Krishnan A, Pereira A (2014) Rice GROWTH UNDER DROUGHT KINASE is required for drought tolerance and grain yield under normal and drought stress conditions. Plant Physiol 166:1634–1645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    Article  PubMed  Google Scholar 

  • Shield LM (1951) The involution mechanism in leaves of certain xeric grasses. Phytomorphology 1:225–241

    Google Scholar 

  • Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98:10763–10768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    Article  PubMed  CAS  Google Scholar 

  • Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C (2012) DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24:2562–2577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B, AbuQamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257–273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vij S, Giri J, Dansana PK, Kapoor S, Tyagi AK (2008) The receptor-like cytoplasmic kinase (OsRLCK) gene family in rice: organization, phylogenetic relationship, and expression during development and stress. Mol Plant 1:732–750

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Li JY (2005) The plant architecture of rice (Oryza sativa). Plant Mol Biol 59:75–84

    Article  PubMed  CAS  Google Scholar 

  • Wu XJ (2009) Prospects of developing hybrid rice with super high yield. Agron J 101:688–695

    Article  Google Scholar 

  • Wu C, Fu YP, Hu GC, Si HM, Cheng SH, Liu WZ (2010) Isolation and characterization of a rice mutant with narrow and rolled leaves. Planta 232:313–324

    Article  PubMed  CAS  Google Scholar 

  • Xia M, Tang D, Yang Y, Li Y, Wang W, Lü H, Liu X, Lin J (2017) Preliminary study on the rice OsYABBY6 gene involving in the regulation of leaf development. Life Science Research 21:23–30

    Google Scholar 

  • Xiang JJ, Zhang GH, Qian Q, Xue HW (2012) SEMI-ROLLED LEAF1 encodes a putative glycosylphosphatidylinositol-anchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol 159:1488–1500

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y, Wang Y, Long Q, Huang J, Wang Y, Zhou K, Zheng M, Sun J, Chen H, Chen S, Jiang L, Wang C, Wan J (2014) Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice. Planta 239:803–816

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Ding Y, Jiang Q, Wang F, Sun J, Zhu C (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36:235–242

    Article  PubMed  CAS  Google Scholar 

  • Yuan LP (1997) Super-high yield hybrid rice breeding. Hybrid Rice 12:1–6

    Google Scholar 

  • Zhang GH, Xu Q, Zhu XD, Qian Q, Xue HW (2009) SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development. Plant Cell 21:719–735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang JJ, Wu SY, Jiang L, Wang JL, Zhang X, Guo XP, Wu CY, Wan JM (2015) A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.) Plant Biol 17:437–448

    Article  PubMed  CAS  Google Scholar 

  • Zhao SQ, Hu J, Guo LB, Qian Q, Xue HW (2010) Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res 20:935–947

    Article  PubMed  CAS  Google Scholar 

  • Zhou YB, Liu H, Zhou XC, Yan YZ, Du CQ, Li YX, Liu DR, Zhang CS, Deng XL, Tang DY, Zhao XY, Zhu YH, Lin JZ, Liu XM (2014) Over-expression of a fungal NADP(H)-dependent glutamate dehydrogenase PcGDH improves nitrogen assimilation and growth quality in rice. Mol Breed 34:335–349

    Article  CAS  Google Scholar 

  • Zhou Y, Zhang C, Lin J, Yang Y, Peng Y, Tang D, Zhao X, Zhu Y, Liu X (2015) Over-expression of a glutamate dehydrogenase gene, MgGDH, from Magnaporthe grisea confers tolerance to dehydration stress in transgenic rice. Planta 241:727–740

    Article  PubMed  CAS  Google Scholar 

  • Zhou B, Lin JZ, Peng D, Yang YZ, Guo M, Tang DY, Tan XF, Liu XM (2017) Plant architecture and grain yield are regulated by the novel DHHC-type zinc finger protein genes in rice (Oryza sativa L.) Plant Sci 254:12–21

    Article  PubMed  CAS  Google Scholar 

  • Zou LP, Sun XH, Zhang ZG, Liu P, Wu JX, Tian CJ, Qiu JL, Lu TG (2011) Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice. Plant Physiol 156:1589–1602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (No. 31170172 and 31571635), Important National Science and Technology Specific Projects (2016ZX08001-004), Hunan Provincial Natural Science Foundation of China (2017JJ2042), Planned Science and Technology Project of Hunan Province (2017WK2012), Planned Science and Technology Project of Changsha City (kq1701028), and Public Subject of State Key Laboratory of Rice Biology (No. 150103).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Y. Zhou, J. Lin, and X. Liu. Performed the experiments: Y. Zhou, D. Wang, and T. Wu. Partially participated in the experiments: Y. Yang, C. Liu, L. Yan, D. Tang, X. Zhao, and Y. Zhu. Analyzed the data: Y. Zhou, D. Wang, T. Wu, and J. Lin. Wrote the manuscript: Y. Zhou and J. Lin. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Jianzhong Lin or Xuanming Liu.

Electronic supplementary material

ESM 1

(DOCX 17 kb)

ESM 2

(DOCX 78.1 kb)

ESM 3

(DOCX 423 kb)

ESM 4

(DOCX 111 kb)

ESM 5

(DOCX 207 kb)

ESM 6

(DOCX 249 kb)

ESM 7

(DOCX 48.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wang, D., Wu, T. et al. LRRK1, a receptor-like cytoplasmic kinase, regulates leaf rolling through modulating bulliform cell development in rice. Mol Breeding 38, 48 (2018). https://doi.org/10.1007/s11032-018-0811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0811-4

Keywords

Navigation