Skip to main content
Log in

Molecular cloning, expression analysis, and subcellular localization of FLOWERING LOCUS T (FT) in carrot (Daucus carota L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Flowering, an important agronomic trait for seed plants, represents the end of vegetative growth and begins to reproduce. In regulating the floral transition, FLOWERING LOCUS T (FT) encoding a mobile floral signal protein that belongs to the phosphatidylethanolamine-binding protein (PEBP) family acts as critical role. Here, an FT-like gene, DcFT, was isolated and cloned from European Daucus carota L. cultivar “Nantes-H06” (GenBank accession number KY768910), and an alignment of the DcFT protein and other FT-homolog proteins showed that it shared 88.00% similarity with CsFT from Camellia sinensis. Phylogenetic tree analysis indicated that DcFT had the closest relationship with GpFT (Gypsophila paniculata). Quantitative RT-PCR was analyzed to show that the expression pattern of DcFT in inflorescences sharply increased after 10DAA and then slowly increased reaching the maximum at 30DAA. Subcellular localization made clear that the DcFT protein was located in the nucleus and cytoplasm. Broadly speaking, DcFT is an FT-like homologous gene in carrot regulating the floral transition and could be a candidate gene for accelerating the process in carrot breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y et al (2005) Fd, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309(5737):1052

    Article  CAS  PubMed  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312(5776):1040–1043

    Article  PubMed  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl):S18–S31. https://doi.org/10.1105/tpc.015958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chailakhyan MK (1968) Internal factors of plant flowering. Annu Rev Plant Physiol 19(19):1–37

    Article  Google Scholar 

  • Chen FF, Huang YJ, Wang ZJ, Liu GH, Huang JQ (2009) Cloning and sequence analysis of the FLOWERING LOCUS T homologous genes from Carya cathayensis. Journal of Southwest Forestry University

  • Debener T, Winkelmann T (2010) Ornamentals. Biotechnol Agric For 64:369–391

    CAS  Google Scholar 

  • Fukuda M, Matsuo S, Kikuchi K, Kawazu Y, Fujiyama R, Honda I (2011) Isolation and functional characterization of the FLOWERING LOCUS T homolog, the LsFT gene, in lettuce. J Plant Physiol 168:1602–1607

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Li C, Dong R, Li X, Xiao X, Huang X (2015) Molecular cloning and functional analysis of the FLOWERING LOCUS T (FT) homolog GhFT1 from Gossypium hirsutum. J Integr Plant Biol 57(6):522–533

    Article  CAS  PubMed  Google Scholar 

  • Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci U S A 102:7748–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harig L, Beinecke FA, Oltmanns J, Muth J, Müller O, Rüping B, Twyman RM, Fischer R, Prüfer D, Noll GA (2012) Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J 72:908–921

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, Fukai S et al (2013) The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc Natl Acad Sci U S A 110(42):17137–17142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho WW, Weigel D (2014) Structural features determining flower promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26:552–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Fang Z, Zeng S, Zhang J, Wu K, Chen Z et al (2012) Molecular cloning and functional analysis of three FLOWERING LOCUS T (FT) homologous genes from Chinese cymbidium. Int J Mol Sci 13(9):11385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M et al (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55:521–535. https://doi.org/10.1146/ annurev.arplant.55.031903.141644

    Article  CAS  PubMed  Google Scholar 

  • Lee R, Baldwin S, Kenel F, McCallum J, Macknight R (2013) FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat Commun 4:2884

    PubMed  Google Scholar 

  • Lei H, Guo X, Wang Y, Yao L, Wang S, Li T (2015) Identification and characterization of faft1: a homolog of flowering locus t from strawberry. Adv J Food Sci Technol 8(3):180–188

    Article  CAS  Google Scholar 

  • Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U S A 103:6398–6403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19:1488–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoharan RK, Han JS, Vijayakumar H, Subramani B, Thamilarasan SK, Park JI et al (2016) Molecular and functional characterization of FLOWERING LOCUS T homologs in Allium cepa. Molecules 21(2)

  • Mathieu J, Warthmann N, Küttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Niu L, Fu C, Lin H, Wolabu TW, Wu Y, Wang ZY et al (2016) Control of floral transition in the bioenergy crop switchgrass. Plant Cell Environ 39:2158–2171

    Article  CAS  PubMed  Google Scholar 

  • Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL et al (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Samach AH, Onouchi SE, Gold GS, Ditta Z, Schwarz-Sommer et al (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613–1616

  • Schmittgen TD, Livak KJ (2008) Schmittgen td, livak kjanalyzing real-time PCR data by the comparative c(t) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Scott A, Wyatt S, Tsou PL, Robertson D, Allen NS (1999) Model system for plant cell biology: GFP imaging in living onion epidermal cells. BioTechniques 26(6):1125–1132

    CAS  PubMed  Google Scholar 

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Jia Z, Cao D, Jiang B et al (2011) GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS One 6(12):e29238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S et al (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) Mega6: molecular evolutionary genetics analysis version 6.0. Molecular Biology & Evolution 30(12):2725

    Article  CAS  Google Scholar 

  • Tan FC, Swain SM (2006) Genetics of flower initiation and development in annual and perennial plants. Physiol Plant 128:8–17

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C, Jiang Q, Wang F, Wang GL, ZS X, Xiong AS (2015) Selection of suitable reference genes for qPCR normalization under abiotic stresses and hormone stimuli in carrot leaves. PLoS One 10(2):e0117569

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsaftaris A, Pasentsis K, Argiriou A (2013) Cloning and characterization of flowering locus t-like genes from the perennial geophyte saffron crocus (Crocus sativus). Plant Mol Biol Report 31(6):1558–1568

    Article  CAS  Google Scholar 

  • Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59(59):573–594

    Article  CAS  PubMed  Google Scholar 

  • Vergara R, Noriega X, Parada F, Dantas D, Pérez FJ (2016) Relationship between endodormancy, FLOWERING LOCUS T, and cell cycle genes in vitis, vinifera. Planta 243(2):411–419

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M et al (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Wilkie JD, Sedgley M, Olesen T (2008) Regulation of floral initiation in horticultural trees. J Exp Bot 59:3215–3228

    Article  CAS  PubMed  Google Scholar 

  • Wolabu TW, Zhang F, Niu L, Kalve S, Bhatnagar-Mathur P, Muszynski MG et al (2016) Three FLOWERING LOCUS T-like genes function as potential florigens and mediate photoperiod response in sorghum. New Phytol 210(3):946

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JA (2008) Leaf-produced floral signals. Curr Opin Plant Biol 11(5):541–547

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by grants from the National Key Technology Research and Development Program of China (2012BAD01B00, 2012BAD50G01, 2014BAD01B08, and JNKYT201601). Our research was also supported by the Technological Innovation Capacity Program of the Beijing Academy of Agricultural and Forestry Sciences (KJCX20150111, KJCX20170102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liang.

Ethics declarations

The experiments described here comply with the current laws of China.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 161 kb)

ESM 2

(PDF 116 kb)

ESM 3

(XLSX 16.8 kb)

ESM 4

(XLS 21.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Z., Zhang, C., Zhang, H. et al. Molecular cloning, expression analysis, and subcellular localization of FLOWERING LOCUS T (FT) in carrot (Daucus carota L.). Mol Breeding 37, 149 (2017). https://doi.org/10.1007/s11032-017-0749-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0749-y

Keywords

Navigation