Skip to main content
Log in

Development and linkage mapping of novel sex-linked markers for marker-assisted cultivar breeding in pistachio (Pistacia vera L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The dioecious character of Pistacia vera L (the pistachio tree) limits its breeding capacity. Thus, early stage selection of males can save time, labor, and land. This study aimed to develop sex-linked single nucleotide polymorphism (SNP) markers, together with expressed sequence tag-derived simple sequence repeats (EST-SSRs), to determine position of the sex locus in pistachio by constructing a linkage map of its sex chromosome for the first time. Nine novel sex-linked SNP markers were successfully identified by SNaPshot minisequencing analysis of 25 SNP loci from 17 restriction site-associated DNA (RAD) reads in 309 individuals. All nine markers were heterozygous in females and homozygous in males supporting a ZW/ZZ sex determination system in pistachio. A total of 105 segregating SSRs and sex-linked markers were used to identify the sex chromosome and the position of the sex locus through analysis of a Siirt × Bağyolu F1 population with 122 progenies. Of these 105 markers, four common and four paternal SSRs were mapped onto the sex chromosome, along with the phenotypic sex locus and sex-linked markers. The resulting consensus map had a total length of 65.19 cM. The sex locus and sex-linked SNP markers were located in the center of the chromosome at a distance of 31.86 and 31.92 cM, respectively. This study presents valuable information about the sex chromosome and sex locus position as well as novel polymorphic EST-SSRs and nine sex-linked SNP markers in pistachio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahmad R, Ferguson L, Southwick SM (2003) Identification of pistachio (Pistacia vera L.) nuts with microsatellite markers. J Am Soc Hortic Sci 128(6):898–903

    CAS  Google Scholar 

  • Albaladejo RG, Sebastiani F, Aparicio A, Buonamici A, Gonzalez-Martinez SC, Vendramins GG (2008) Development and characterization of eight polymorphic microsatellite loci from Pistacia lentiscus L. (Anacardiaceae). Mol Ecol Resour 8:904–906

    Article  CAS  PubMed  Google Scholar 

  • Arabnezhad H, Bahar M, Pour AT (2011) Evaluation of genetic relationship among Iranian pistachios using microsatellite markers developed from Pistacia khinjuk stocks. Sci Hortic 128(3):249–254

    Article  CAS  Google Scholar 

  • Ballard TS1, Mallikarjunan P, Zhou K, O'Keefe SF (2009) Optimizing the extraction of phenolic antioxidants from peanut skins using response surface methodology. J Agric Food Chem 57(8):3064–3072. doi:10.1021/jf8030925

    Article  CAS  PubMed  Google Scholar 

  • Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102

    Article  PubMed  Google Scholar 

  • Charlesworth B (1991) The evolution of sex chromosomes. Science 251:1030–1032. doi:10.1126/science.1998119

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B (2002) Plant sex determination and sex chromosomes. Heredity 88:94–101

    Article  PubMed  Google Scholar 

  • Charlesworth D (2016) Plant sex chromosomes. Ann Review Plant Biol 67:397–420. doi:10.1146/annurev-arplant-043015-111911

    Article  CAS  Google Scholar 

  • Chen S, Wu X, Ji Y, Yang J (2011) Isolation and characterization of microsatellite loci in Pistacia weinmannifolia (Anacardiaceae). Int J Mol Sci 12:7818–7823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djoussé L, Rudicha T, Gaziano JM (2009) Nut consumption and risk of hypertension in US male physicians. Clin Nut 28:10–14. doi:10.1016/j.clnu.2008.08.005

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Dudley J, Das S, Mukherjee S, Das DK (2008) Resveratrol, a unique phytoalexin present in red wine, delivers either survival signal or death signal to the ischemic myocardium depending on dose. J Nutr Biochem 20(6):443–452

    Article  PubMed  Google Scholar 

  • Dreher ML (2012) Pistachio nuts: composition and potential health benefits. Nutr Rev 70:234–240

    Article  PubMed  Google Scholar 

  • Faostat, 2016. FAO web page. (http://www.fao.org/faostat). Accessed 04/01/2016

  • Fu H, Zheng Z, Dooner HK (2002) Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proceedings of the National Academy of Sciences, USA 99:1082–1087

    Article  CAS  Google Scholar 

  • Ghaffari S, Harandi OF (2002) Chromosome counts and assessment of two heterochromatic chromosomes in some species of Pistacia L. from İran. Acta Hortic 591:389–393

    Article  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halvorsen BL, Carlsen MH, Phillips KM, Bohn SK, Holte K, Jacobs DR, Blomhoff R (2006) Content of redox-active compounds (ie, antioxidants) in foods consumed in the United States. Am J Clin Nutr 84:95–135

    CAS  PubMed  Google Scholar 

  • Hormaza JI (1994) An analysis of sex expression, geographic distribution and genetic relatedness among clones and cultivars of pistachio (Pistacia vera L.). PhD Thesis. University of California, Davis

  • Hormaza JI, Dollo L, Polito VS (1994) Identification of a RAPD marker linked to sex determination in Pistacia vera using bulked segregant analysis. Theor Appl Genet 89(1):9–13. doi:10.1007/BF00226975

    Article  CAS  PubMed  Google Scholar 

  • Ila HB, Kafkas S, Topaktaş M (2003) Chromosome numbers of four Pistacia (Anacardiaceae) species. J Horticultural Sci Biotechnol 78(1):35–38

    Article  Google Scholar 

  • Kafkas S (2006a) Phylogenetic analysis of the genus Pistacia by AFLP markers. Plant Syst Evol 262:113–124

    Article  Google Scholar 

  • Kafkas S (2006b) Phylogeny, evolution and biodiversity in the genus Pistacia (Anacardiaceae). In: Shama AK, Sharma A. Editor. Plant genome: biodiversity and evolution 1:525–57

  • Kafkas S, Özkan H, Ak BE, Açar I, Atli HS, Koyuncu S (2006b) Detecting DNA polymorphism and genetic diversity in a wide pistachio germplasm: comparison of AFLP, ISSR and RAPD markers. J Am Soc Hortic Sci 131(4):522–529

    CAS  Google Scholar 

  • Kafkas S, Kaska N, Wassimi W, Padulosi S (2006a) Molecular characterisation of Afghan pistachio accessions by amplified fragment length polymorphisms (AFLPs). J Hortic Sci Biotechnol 81:864–868

    Article  CAS  Google Scholar 

  • Kafkas S, Khodaeiaminjan M, Guney M, Kafkas E (2015) Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genomics 16:98. doi:10.1186/s12864-015-1326-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolahi-Zonoozi SH, Mardi M, Zeinalabedini M, Pirseyedi SM, Mahmoodi P, Tabatabaei I et al (2014) Development of 12 new SSR markers for genetic diversity and structure analysis in pistachio (Pistacia vera L.) J Hortic Sci Biotechnol 89:707–711

    Article  CAS  Google Scholar 

  • Kosambi DD (1994) The estimation of map distance from recombination value. Ann Eugenics 12:172–175

    Article  Google Scholar 

  • Kris-Etherton PM, Hecker KD, Bonanome A et al (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71S–88S

    Article  CAS  PubMed  Google Scholar 

  • Kris-Etherton PM, Hu FB, Ros E (2008) The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. J Nutr 138:S1746–S1751

    Google Scholar 

  • Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q et al (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. doi:10.1038/nature02228

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166:419–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez HJ, Lozano ES, Martinez AAL (2007) Biocombustible de la nueva era energética. Hypatia 22:1–2

    Google Scholar 

  • Ming R, Bendahmane A, Renner SS (2011) Sex chromosomes in land plants. Ann. Rev. Plant Biol 62:485–574

    Article  CAS  Google Scholar 

  • Motalebipour EZ, Kafkas S, Khodaeiaminjan M, Çoban N, Gözel H (2016) Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: development of novel SSR markers and genetic diversity in Pistacia species. BMC genomics 17:998 doi: 10.1186/s12864-016-3359-x

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotech 18:233–234

    Article  CAS  Google Scholar 

  • Sola-Campoy PJ, Robles F, Schwarzacher T, Rejon CR, Herran R, Navajas-Perez R (2015) The molecular cytogenetic characterization of pistachio (Pistacia vera L.) suggests the arrest of recombination in the largest heteropycnotic pair HC1. PLoS One 10:e0143861. doi:10.1371/journal.pone.0143861

    Article  PubMed  PubMed Central  Google Scholar 

  • Spigler RB, Lewers KS, Johnson AL, Ashman TL (2010) Comparative mapping reveals autosomal origin of sex chromosome in octoploid Fragaria virginiana. J Hered 101:S107–S117. doi:10.1093/jhered/esq001

    Article  CAS  PubMed  Google Scholar 

  • Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–903

    Article  CAS  PubMed  Google Scholar 

  • Tokusoglu O, Unal MK, Yemis F (2005) Determination of the phytoalexin resveratrol (3,5,4′-trihydroxystilbene) in peanuts and pistachios by high performance liquid chromatographic diode array (HPLC-DAD) and gas chromatography-mass spectrometry (GC-MS). J Agric Food Chem 53:5003–5009

    Article  CAS  PubMed  Google Scholar 

  • Topçu H, Nergiz C, Kafkas S (2016) Novel microsatellite markers in Pistacia vera L. and their transferability across the genus Pistacia. Sci Hortic 198:91–97

    Article  Google Scholar 

  • Van Ooijen JW (2011) Joinmap 4.1, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen-Netherlands

  • Yakubov B, Barazani O, Golan-Goldhirsh A (2005) Combination of SCAR primers and touchdown-PCR for sex identification in Pistacia vera L. Sci Hort 103:473–478. doi:10.1016/j.scienta.2004.06.008

    Article  CAS  Google Scholar 

  • Yin T, Difazio SP, Gunter LE, Zhang X, Sewell MM, Woolbright SA et al (2008) Genome structure and emerging evidence of an incipient sex chromosome in Populus. Genome Res 18:422–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You FM, Huo N, Gu YQ, Luo MC, Ma Y, Hane D et al (2008) BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9:253. doi:10.1186/1471-2105-9-253

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Navajas-Perez R, Tong E, Robertson J, Paul H, Moore PH, et al (2008) Recent origin of dioecious and gynodioecious Y chromosomes in papaya. Trop. Plant Biol.1:49–57

  • Yu QY, Hou S, Hobza R, Feltus FA, Wang X, Jin W, Skelton RL, Blas A, Lemke C, Saw JH, Moore PH, Alam M, Jiang J, Paterson AH, Vyskot B, Ming R (2007) Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Gen Genomics 278(2):177–185. doi:10.1007/s00438-007-0243-z

    Article  CAS  Google Scholar 

  • Zaloğlu S, Kafkas S, Doğan Y, Güney M (2015) Development and characterization of SSR markers from pistachio (Pistacia vera L.) and their transferability to eight Pistacia species. Sci Hortic 189:94–103

    Article  Google Scholar 

  • Zhang WL, Wang XU, Yu QY, Ming R, Jiang J (2008) DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya. Genome Res 18(12):1938–1943. doi:10.1101/gr.078808.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the General Directorate of Agricultural Research and Policies (Project No. TAGEM/13/ARGE/22) at the Republic of Turkey Ministry of Food, Agriculture and Livestock, and the Cukurova University Scientific Research Projects Unit (Project No: FDK-2015-3641, FBA-2015-4821, and FBA-2016-5606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Kafkas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Data archiving statement

DNA sequences containing SNPs were deposited in GenBank (IDs KY882024- KY882032 (www.ncbi.nlm.nih.gov/genbank/).

Electronic supplementary material

ESM 1

(XLSX 11 kb)

ESM 2

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaeiaminjan, M., Kafkas, E., Güney, M. et al. Development and linkage mapping of novel sex-linked markers for marker-assisted cultivar breeding in pistachio (Pistacia vera L.). Mol Breeding 37, 98 (2017). https://doi.org/10.1007/s11032-017-0705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0705-x

Keywords

Navigation