Skip to main content
Log in

A novel R2R3-MYB transcription factor regulates light-mediated floral and vegetative anthocyanin pigmentation patterns in Lilium regale

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Color patterns in angiosperm flowers are produced by spatially and temporally restricted deposition of pigments. Many Lilium species show anthocyanin pigmentation of the whole tepal, which is regulated by the MYB12/basic helix-loop-helix 2 (bHLH2) transcription factor complex. However, in Lilium regale pigment deposition is restricted to light-exposed surfaces of the flower buds, leaves, and bracts. Investigation of how the unique color patterns of L. regale are regulated led to the identification and isolation of a novel R2R3-MYB gene, LrMYB15. In stable and transient transformation assays in tobacco, LrMYB15 stimulated transcription of anthocyanin biosynthesis genes, indicating that it is involved in the positive regulation of anthocyanins. In L. regale, anthocyanin biosynthesis genes and LrMYB15 were expressed in the outer tepals, leaves, and bracts that accumulated anthocyanin pigments. In contrast, LrbHLH2, another regulatory gene for anthocyanin biosynthesis, was transcribed in all organs irrespective of anthocyanin accumulation. These results indicate that LrMYB15 principally determines the unique anthocyanin color patterns of L. regale. In addition, LrMYB15 transcription ceased completely when plants were kept in shaded conditions and the colors of the flower buds faded, indicating that transcription of this gene is under the control of light. R2R3-MYB genes that regulate light-induced anthocyanin accumulation on exposed petal surfaces have been isolated in eudicots. The results here indicate that R2R3-MYB genes exhibiting similar (but not identical) functions are conserved between monocots and eudicots and that transcriptional regulation is a major mechanism for generating restricted pigment deposition in the flowers of a wide range of angiosperm species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe H, Nakano M, Nakatsuka A, Nakayama M, Koshioka M, Yamagishi M (2002) Genetic analysis of floral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps. Theor Appl Genet 105:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, Davies KM (2009) Light-induced vegetative anthocyanin pigmentation in Petunia. J Exp Bot 60:2191–2202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Albert NW, Arathoon S, Collette VE, Schwinn KE, Jameson PE, Lewis DH, Zhang H, Davies KM (2010) Activation of anthocyanin synthesis in Cymbidium orchids: variability between known regulators. Plant Cell Tissue Organ Cult 100:355–360

    Article  CAS  Google Scholar 

  • Albert NW, Lewis DH, Zhang H, Schwinn KE, Jameson PE, Davies KM (2011) Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant J 65:771–784

    Article  CAS  PubMed  Google Scholar 

  • Asano Y (1989) Lilium L. In: Tsukamoto Y (ed) The grand dictionary of horticulture, vol 5. Syogakukan, Tokyo, pp 198–209 (in Japanese)

    Google Scholar 

  • Bai Y, Pattanaik S, Patra B, Werkman JR, Xie CH, Yuan L (2011) Flavonoid-related basic helix–loop–helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active. Planta 234:363–375

    Article  CAS  PubMed  Google Scholar 

  • Baudry A, Caboche M, Lepinlec L (2006) TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J 46:768–779

    Article  CAS  PubMed  Google Scholar 

  • Bird R (1991) Lilies. Chartwell Books Inc., Secaucus

    Google Scholar 

  • Broun P (2005) Transcriptional control of flavonoid biosynthesis: a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Curr Opin Plant Biol 8:272–279

    Article  CAS  PubMed  Google Scholar 

  • Comber HF (1949) A new classification of the genus Lilium. In: Lily yearbook, vol 13. Royal Horticultural Society, London, pp 85–105

  • Davies KM, Albert NW, Schwinn KE (2012) From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct Plant Biol 39:619–638

    Article  CAS  Google Scholar 

  • Du J, Rietman H, Vleeshouwers V (2014) Agroinfiltration and PVX agroinfiltration in potato and Nicotiana benthamiana. J Vis Exp 83:e50971

    PubMed  Google Scholar 

  • Ferreyra MLF, Rius SP, Casati P (2012) Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci 3:222

    Google Scholar 

  • Fraser LG, Seal AG, Montefiori M, McGhie TK, Tsang GK, Datson PM, Hilario E, Marsh HE, Dunn JK, Hellens RP, Davies KM, McNeilage MA, De Silva HN, Allan AC (2013) An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population. BMC Genom 14:28

    Article  CAS  Google Scholar 

  • Glover BJ, Walker RH, Moyroud E, Brockington SF (2013) How to spot a flower. New Phytol 197:687–689

    Article  PubMed  Google Scholar 

  • Gong ZZ, Yamazaki M, Saito K (1999) A light-inducible Myb-like gene that is specifically expressed in red Perilla frutescens and presumably acts as a determining factor of the anthocyanin formation. Mol Gen Genet 262:65–72

    CAS  PubMed  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Gould KS (2004) Nature’s Swiss Army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotech 2004:314–320

    Article  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V (2011) Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot 62:2465–2483

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Jaakola L (2013) New insights into the regulation of anthocyanin biosynthesis in fruits. Trends Plant Sci 18:477–483

    Article  CAS  PubMed  Google Scholar 

  • Jiang R, Tian J, Song T, Zhang J, Yao Y (2014) The Malus crabapple transcription factor McMYB10 regulates anthocyanin biosynthesis during petal coloration. Sci Hortic 166:42–49

    Article  CAS  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) MYB-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  CAS  PubMed  Google Scholar 

  • Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242

    Article  CAS  PubMed  Google Scholar 

  • Koseki M, Goto K, Masuta C, Kanazawa A (2005) The star-type color pattern in Petunia hybrida ‘Red Star’ flowers is induced by sequence-specific degradation of chalcone synthase RNA. Plant Cell Physiol 46:1879–1883

    Article  CAS  PubMed  Google Scholar 

  • Lai Y-S, Shimoyamada Y, Nakayama M, Yamagishi M (2012) Pigment accumulation and transcription of LhMYB12 and anthocyanin biosynthesis genes during flower development in the Asiatic hybrid lily (Lilium spp.). Plant Sci 193–194:136–147

    Article  PubMed  Google Scholar 

  • Lai Y, Li H, Yamagishi M (2013) A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity. Frontiers Biol 8:577–598

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Leslie AC (1982) The international lily register, 3rd edn. The Royal Horticultural Society, London

    Google Scholar 

  • Lim KB, van Tuyl JM (2006) Lily: Lilium hybrids. In: Anderson NO (ed) Flower breeding and genetics: issues, challenges and opportunities for the 21st century. Springer, Dordrecht, pp 513–532

    Google Scholar 

  • Lim KB, Barba-Gonzalez R, Zhou S, Ramanna MS, van Tuyl JM (2008) Interspecific hybridization in lily (Lilium): Taxonomic and commercial aspects of using species hybrids in breeding. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology, vol V. Global Science Books Ltd., Kagawa, pp 146–151

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Schrader A, Kokkelink L, Falke C, Welter B, Iniesto E et al (2013) Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J 74:638–651

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Ryoko S, Ban Y, Tanikawa N, Kuchitsu K, Ando T et al (2012) Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida. Plant J 70:739–749

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuka A, Izumi Y, Yamagishi M (2003) Spatial and temporal expression of chalcone synthase and dihydroflavonol 4-reductase genes in the Asiatic hybrid lily. Plant Sci 165:759–767

    Article  CAS  Google Scholar 

  • Nakatsuka A, Yamagishi M, Nakano M, Tasaki K, Kobayashi N (2009) Light-induced expression of basic helix–loop–helix genes involved in anthocyanin biosynthesis in flowers and leaves of Asiatic hybrid lily. Sci Hortic 121:84–91

    Article  CAS  Google Scholar 

  • Nakatsuka T, Saito M, Yamada E, Fujita K, Kakizaki Y, Nishihara M (2012) Isolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentian flowers. J Exp Bot 63:6505–6517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nørbæk R, Kondo T (1999) Anthocyanins from flowers of Lilium (Liliaceae). Phytochem 50:1181–1184

    Article  Google Scholar 

  • Ohno S, Hosokawa M, Kojima M, Kitamura Y, Hoshino A, Tatsuzawa F et al (2011) Simultaneous post-transcriptional gene silencing of two different chalcone synthase genes resulting in pure white flowers in the octoploid dahlia. Planta 234:945–958

    Article  CAS  PubMed  Google Scholar 

  • Pattanaik S, Kong Q, Zaitlin D, Werkman JR, Xie CH, Patra B et al (2010) Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. Planta 231:1061–1076

    Article  CAS  PubMed  Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  CAS  PubMed  Google Scholar 

  • Piazza P, Procissi A, Jenkins GI, Tonelli C (2002) Members of the c1/pl1 regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins. Plant Physiol 128:1077–1086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quattrocchio F, Wing J, van der Woude K, Souer E, de Vetten N, Mol J et al (1999) Molecular analysis of the anthocyanin2 gene of Petunia and its role in the evolution of flower color. Plant Cell 11:1433–1444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sainz MB, Grotewold E, Chandler VL (1997) Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins. Plant Cell 9:611–625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saito R, Fukuta N, Ohmiya A, Itoh Y, Ozeki Y, Kuchitsu K et al (2006) Regulation of anthocyanin biosynthesis involved in the formation of marginal picotee petals in Petunia. Plant Sci 170:828–834

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schaefer HM, Schaefer V, Levey DJ (2004) How plant–animal interactions signal new insights in communication. Trends Ecol Evol 19:577–584

    Article  Google Scholar 

  • Schwinn K, Venail J, Sang Y, Mackay S, Alm V, Butelli E et al (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shang Y, Venail J, Mackay S, Bailey PC, Schwinn KE, Jameson PE et al (2011) The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum. New Phytol 189:602–615

    Article  CAS  PubMed  Google Scholar 

  • Smyth DR, Kongsuwan K, Wisudharomn S (1989) A survey of C-band patterns in chromosomes of Lilium (Liliaceae). Plant Syst Evol 163:53–69

    Article  Google Scholar 

  • Spelt C, Quattrocchio F, Mol JN, Koes R (2000) anthocyanin1 of petunia encodes a basic helix–loop–helix protein that directly activates transcription of structural anthocyanin genes. Plant Cell 12:1619–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suzuki K, Tasaki K, Yamagishi M (2015) Two distinct spontaneous mutations involved in white flower development in Lilium speciosum. Mol Breed 35:193

    Article  Google Scholar 

  • Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tateishi N, Ozaki Y, Okubo H (2010) White marginal picotee formation in the petals of Camellia japonica ‘Tamanoura’. J Jpn Soc Hort Sci 79:207–214

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamagishi M (2011) Oriental hybrid lily Sorbonne homologue of LhMYB12 regulates anthocyanin biosyntheses in flower tepals and tepal spots. Mol Breed 28:381–389

    Article  CAS  Google Scholar 

  • Yamagishi M (2013) How genes paint lily flowers: regulation of colouration and pigmentation patterning. Sci Hortic 163:27–37

    Article  CAS  Google Scholar 

  • Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K (2010) Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosyntheses in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol 51:463–474

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi M, Yoshida Y, Nakayama M (2012) The transcription factor LhMYB12 determines anthocyanin pigmentation in the tepals of Asiatic hybrid lilies (Lilium spp.) and regulates pigment quantity. Mol Breed 30:913–925

    Article  CAS  Google Scholar 

  • Yamagishi M, Ihara H, Arakawa K, Toda S, Suzuki K (2014a) The origin of the LhMYB12 gene, which regulates anthocyanin pigmentation of tepals, in oriental and Asiatic hybrid lilies (Lilium spp.). Sci Hortic 174:119–125

    Article  CAS  Google Scholar 

  • Yamagishi M, Toda S, Tasaki K (2014b) The novel allele of the LhMYB12 gene is involved in splatter-type spot formation on the flower tepals of Asiatic hybrid lilies (Lilium spp.). New Phytol 201:1009–1020

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y-W, Sagawa JM, Frost L, Vela JP, Bradshaw HD Jr (2014) Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus). New Phytol 204:1013–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40:22–34

    Article  CAS  PubMed  Google Scholar 

  • Zoratti L, Karppinen K, Escobar AL, Häggman H, Jaakola L (2014) Light-controlled flavonoid biosynthesis in fruits. Front Plant Sci 5:534

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-In-Aid for Scientific Research (No. 24380014) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumi Yamagishi.

Additional information

The nucleotide sequences reported in this study have been submitted to DDBJ under accession numbers LC021383 and LC021384 (LrMYB15), LC021385 and LC021386 (LrbHLH2), LC021387 (LrCHSa), LC021388 and LC021389 (LrCHSb), LC021390 and LC021391 (LrF3H), LC021392 and LC021393 (LrF3'H), LC021394 and LC021395 (LrDFR), LC021396 (LrANS), LC021397 and LC021398 (LrACTIN), and LC077857 (NbAN1).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagishi, M. A novel R2R3-MYB transcription factor regulates light-mediated floral and vegetative anthocyanin pigmentation patterns in Lilium regale . Mol Breeding 36, 3 (2016). https://doi.org/10.1007/s11032-015-0426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0426-y

Keywords

Navigation