Skip to main content
Log in

Different QTLs are associated with leaf rust resistance in wheat between China and Mexico

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The wheat line ‘Chapio’ is resistant to leaf rust, caused by Puccinia triticinia, and was derived from a breeding programme that focuses on multi-genic resistance to provide durability. This line was crossed with the susceptible ‘Avocet’ to develop an F6 recombinant inbred line population. The population was phenotyped for leaf rust severity in two environments each in Mexico and China. There were significant differences in the loci providing resistance between the two intercontinental regions. The Lr34 locus had large effects in both Mexico and China, highlighting its importance in providing a basis for broad-spectrum resistance. The Lr46 locus on chromosome 1BL and a 3D locus had effects in Mexico but not in China. Presence of Sr2 was determined by the phenotypic marker of pseudo-black chaff and was mapped to chromosome 3BS. This region was associated with a QTL that had strong effects in China but no significant effect in Mexico, as did a locus on chromosome 4B. Seedling tests on the parents indicated that the 3B locus was not the complimentary gene Lr27, but the 4B locus was in the same position as Lr31 (or Lr12). Further investigations showed that these loci worked independently and additively in adult plants. Chapio was bred for quantitative, non-race-specific resistance under strong phenotypic selection for leaf rust in Mexico. It is interesting that different QTLs contribute to this resistance in another country, and these results suggest that environmental effects, as well as race specificity, can play a role in expression of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal S, Saini RG (2009) Undescribed wheat gene for partial leaf rust and stripe rust resistance from Thatcher derivatives RL6058 and 90RN2491 carrying Lr34. J Appl Genet 50:199–204

    Article  CAS  PubMed  Google Scholar 

  • Basnet BR, Singh RP, Ibrahim AMH, Herrera-Foessel SA, Huerta-Espino J, Lan C, Rudd JC (2014) Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol Breed 33:385–399

    Article  CAS  Google Scholar 

  • Buetow KH, Chakaravarti A (1987) Multipoint gene mapping using seriation. I. General methods. Am J Hum Genet 41:180–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen (2013) High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sciences 4:608–627

  • Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathol 99:968–973

    Article  CAS  Google Scholar 

  • Falk CT (1989) A simple scheme for preliminary ordering of multiple loci: application to 45 CF families. In: Elston RC, Spence MA, Hodge SE, MacCluer JW (eds) Multipoint mapping and linkage based upon affected pedigree members. Genetic Workshop 6. Liss, New York, pp 17–22

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Hoisington D, Khairallah M, Gonzalez-de-Leon D (1994) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 2nd edn. CIMMYT, Mexico

    Google Scholar 

  • Kolmer J, Chen XM, Jin Y (2009) Diseases which challenge global wheat production—the wheat rusts. In: Carver BF (ed) Wheat Science and Trade. Wiley-Blackwell, Iowa, pp 89–117

    Chapter  Google Scholar 

  • Kota R, Spielmeyer W, McIntosh RA, Lagudah ES (2006) Fine genetic mapping fails to dissociate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticum aestivum L.). Theor Appl Genet 112:492–499

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91

    Article  Google Scholar 

  • Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–306

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Chen XM (2009) Quantitative trait locus for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar Express. Theor Appl Genet 118:631–642

    Article  CAS  PubMed  Google Scholar 

  • Long DL, Kolmer JA (1989) A North American system of nomenclature for Puccinia recondite f. sp. tritici. Phytopathol 79:525–529

    Article  Google Scholar 

  • Mago R, Tabe L, McIntosh RA, Pretorius Z, Kota R, Paux E, Wicker T, Breen J, Lagudah ES, Ellis JG (2011) A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theor Appl Genet 123:615–623

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia CX (2014) Catalogue of gene symbols for wheat: 2013–2014 supplement. http://maswheat.ucdavis.edu/CGSW/2013-2014_Supplement.pdf

  • Melichar JPE, Berry S, Newell C, MacCormack R, Boyd LA (2008) QTL identification and microphenotype characterisation of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian. Theor Appl Genet 117:391–399

    Article  CAS  PubMed  Google Scholar 

  • Messmer MM, Seyfarth R, Keller M, Schachermayr G, Winzeler M, Zanetti S, Feuillet C, Keller B (2000) Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet 100:419–431

    Article  CAS  Google Scholar 

  • Navabi A, Tewari JP, Singh RP, McCallum B, Laroche A, Briggs KG (2005) Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum ‘Cook’. Genome 48:97–107

    Article  CAS  PubMed  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale of estimating rust severity on leaves and stems of cereals. Can J Res Sec C 26:496–500

    Article  Google Scholar 

  • Roelfs AP (1984) Race specificity and methods of study. In: Roelfs AP, Bushnell WR (eds) The Cereal Rusts Vol 1; Origins, specificity, structure, and physiology. Academic Press, Orlando, pp 131–164

    Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126:2427–2449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnurbusch T, Bossolini E, Messmer M, Keller B (2004) Tagging and validation of a major quantitative trait locus for leaf rust resistance and leaf tip necrosis in winter wheat cultivar Forno. Phytopathol 94:1036–1041

    Article  CAS  Google Scholar 

  • Singh RP (1991) Pathogenicity veriations of Puccinia recondita f.sp. tritici and P. graminis f.sp. tritici in wheat growing-areas of Mexico during 1988 and 1989. Plant Dis 75:790–794

    Article  Google Scholar 

  • Singh S, Bowden RL (2011) Molecular mapping of adult-plant race-specific leaf rust resistance gene Lr12 in bread wheat. Mol Breeding 28:137–142

    Article  Google Scholar 

  • Singh RP, McIntosh RA (1984) Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum. I. Genetic and linkage studies. Can J Genet Cytol 26:723–735

    Article  Google Scholar 

  • Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathol 88:890–894

  • Singh D, Park RF, McIntosh RA (1999) Genetic relationship between the adult plant resistance gene Lr12 and the complementary gene Lr31 for seedling resistance to leaf rust in common wheat. Plant Path 48:567–573

    Article  CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, Rajaram S (2000a) Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol Hun 35:133–139

    CAS  Google Scholar 

  • Singh RP, Nelson JC, Sorrells ME (2000b) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    Article  CAS  Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite Markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathol 93:881–890

    Article  CAS  Google Scholar 

  • William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990

    Article  CAS  PubMed  Google Scholar 

  • Yang EN, Rosewarne GM, Herrera-Foessel SA, Huerta-Espino J, Tang ZX, Sun CF, Ren ZL, Singh RP (2013) QTL analysis of the spring wheat ‘Chapio’ identified stable rust resistance despite inter-continental genotype × environment interactions. Theor Appl Genet 126:1721–1732

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Li H, Li Z, Wang J (2008) Interactions between markers can be caused by the dominance effect of QTL. Genetics 180:1177–1190

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Science and Technology Department of the Sichuan Provincial Government (Grant No. 2012JQ0013), the Ministry of Science and Technology of China (Grant No. 2012DFA32290), the National Natural Science Foundation of China (Grant No. 31361140367) and the Grains Research and Development Council of Australia (CIM00013 and CIM00015).

Conflict of interest

None of the authors contributing to this work have a real or perceived conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Rosewarne.

Additional information

G. M. Rosewarne and Z. F. Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosewarne, G.M., Li, Z.F., Singh, R.P. et al. Different QTLs are associated with leaf rust resistance in wheat between China and Mexico. Mol Breeding 35, 127 (2015). https://doi.org/10.1007/s11032-015-0317-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0317-2

Keywords

Navigation