Skip to main content
Log in

Identification of QTL for crop timing and quality traits in an interspecific Petunia population

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Genetic mapping in ornamental plant species has lagged behind crop plants from other sectors of agriculture. Here, we describe the generation of a genetic linkage map for the important herbaceous ornamental crop petunia and the identification of QTL for several key crop timing and quality traits, including plant development rate, days to flower and flower number. An F2 population derived from a cross between the progenitor species of cultivated petunia, P. integrifolia × P. axillaris, exhibited transgressive segregation for a broad panel of crop timing and quality traits. A genetic linkage map comprised of 75 simple sequence repeat and six cleaved amplified polymorphic sequence markers spanning 359.1 cM across seven linkage groups was developed and utilized to identify 24 QTL for ten crop timing and quality traits. These included QTL explaining 26.3, 25.9, 26.2 and 43 % of the observed phenotypic variation for flower length, branch number, internode length and the number of flower buds on the primary shoot, respectively. These data provide a foundation for understanding the genetic control of critical traits and identify molecular markers with potential utility to facilitate gene discovery in petunia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe H, Nakano M, Nakatsuka A, Nakayama M, Koshioka M, Yamagashi M (2002) Genetic analysis of floral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps. Theor Appl Genet 105:1175–1182

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Hashimoto G (1993) Two new species of Petunia (Solanaceae) from southern Brazil. Bot J Linn Soc 111:265–280

    Article  Google Scholar 

  • Bartok JW (2001) Energy conservation for commercial greenhouses, 2001 rev. Natural Resource, Agriculture, and Engineering Service, Ithaca

    Google Scholar 

  • Blanchard MG, Runkle ES (2011) The influence of day and night temperature fluctuations on growth and flowering of annual bedding plants and greenhouse heating cost predictions. J Am Soc Hortic Sci 46:599–603

    CAS  Google Scholar 

  • Bossolini E, Klahre U, Brandenburg A, Reinhardt D, Kuhlemeier C (2011) High resolution linkage maps of the model organism Petunia reveal substantial synteny decay with the related genome of tomato. Genome 54:327–340

    Article  CAS  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Cornu A, Farcy E, Mousset C (1989) A genetic basis for variations in meiotic recombination in Petunia hybrida. Genome 32:46–53

    Article  Google Scholar 

  • Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899

    Article  CAS  Google Scholar 

  • Dugo ML, Satovic Z, Millán T, Cubero JI, Rubiales D, Cabrera A, Torres AM (2005) Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor Appl Genet 111:511–520

    Article  CAS  PubMed  Google Scholar 

  • Galliot C, Hoballah M, Kuhlemeier C, Stuurman J (2006) Genetics of flower size and nectar volume in Petunia pollination syndromes. Planta 225:203–212

    Article  CAS  PubMed  Google Scholar 

  • Gerats T, Keukeleire P, Deblaere R, Montagu M, Zethof J (1995) Amplified fragment length polymorphism (AFLP) mapping in Petunia; a fast and reliable method for obtaining a genetic map. Acta Hortic 420:58–61

    CAS  Google Scholar 

  • Griesbach RJ (2007) Petunia. In: Anderson NO (ed) Flower breeding and genetics. Springer, Dordrecht, pp 301–336

    Google Scholar 

  • Hammer K (1984) Das Domestikationssyndrom. Die Kulturpflanze 32:11–34

    Article  Google Scholar 

  • Helliwell CA, Chin-Atkins AN, Wilson IW, Chapple R, Dennis ES, Chaudury A (2001) The arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13:2115–2125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawakatsu T, Itoh J-I, Miyoshi K, Kurata N, Alvarez N, Veit B, Nagato Y (2006) PLASTOCHRON2 regulates leaf initiation and maturation in rice. Plant Cell 18:612–625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klahre U, Gurba A, Hermann K, Saxenhofer M, Bossolini E, Guerin PAM, Kuhlemeier C (2011) Pollinator choice in petunia depends on two major genetic loci for floral scent production. Curr Biol 21:730–739

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mather K, Edwardes PMJ (1943) Specific differences in Petunia: III. Flower colour and genetic isolation. J Genet 45:243–260

    Article  Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi K, Ahn B-O, Kawakatsu T, Ito Y, Itoh J-I, Nagato Y, Kurata N (2004) PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. PNAS 101:875–880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Prigge MJ, Wagner DR (2001) The arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13:1263–1280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robert N, Farcy E, Cornu A (1991) Genetic control of meiotic recombination in Petunia hybrida: dosage effect of gene Rm1 on segments Hf1-Lg1 and An2-Rt; role of modifiers. Genome 34:515–523

    Article  CAS  Google Scholar 

  • Shahin A, Arens P, van Heusden AW, van der Linden G, van Kaauwen M, Schouten HJ, van de Weg WE, Visser RGF, van Tuyl JM (2011) Genetic mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances. Plant Breed 130:372–382

    Article  CAS  Google Scholar 

  • Sims TL, Gomez AB, Delledonne M, Gerats T, Mitrick J, Mueller L, Pezzotti M, Quattrocchio F, Yang B (2012). Sequencing and comparison of the genomes of Petunia inflata and Petunia axillaris. In: Plant and Animal Genome XX Conference (abstract) https://pag.confex.com/pag/xx/webprogram/Paper1786.html. Accessed 26 Oct 2014

  • Stehmann JR, Lorenz-Lemke AP, Freitas LB, Semir J (2009) The genus Petunia. In: Gerats T, Strommer J (eds) Petunia evolutionary, developmental and physiological genetics, Springer, New York, pp 1–28. doi:10.1007/978-0-387-84796-2

  • Strommer J, Gerats AGM, Sanago M, Molnar SJ (2000) A gene-based RFLP map of petunia. Theor Appl Genet 100:899–905

    Article  CAS  Google Scholar 

  • Strommer J, Peters J, Zethof J, de Keukeleire P, Gerats T (2002) AFLP maps of Petunia hybrida: building maps when markers cluster. Theor Appl Genet 105:1000–1009

    Article  CAS  PubMed  Google Scholar 

  • Strommer J, Peters JL, Gerats T (2009) Genetic recombination and mapping in Petunia. In: Gerats T, Strommer J (eds) Petunia. Springer, New York, pp 325–341

  • Stuurman J, Hoballah ME, Broger L, Moore J, Basten C, Kuhlemeier C (2004) Dissection of floral pollination syndromes in petunia. Genetics 168:1585–1599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Ten Hoopen R, Robbins TP, Fransz PF, Montijn BM, Oud O, Gerats AGM, Nanninga N (1996) Localization of T-DNA insertions in petunia by fluorescence in situ hybridization: physical evidence for suppression of recombination. Plant Cell 8:823–830

    Article  PubMed Central  PubMed  Google Scholar 

  • Tychonievich J, Wangchu L, Barry C, Warner RM (2013) Utilizing wild species for marker-assisted selection of crop timing and quality traits in Petunia. Acta Hortic 1000:465–469

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

  • Veit B, Briggs SP, Schmidt RJ, Yanofsky MF, Hake S (1998) Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393:166–168

    Article  CAS  PubMed  Google Scholar 

  • Vlaming P, Gerats AGM, Wiering H, Wijsman HJW, Cornu A, Farcy E, Maizonnier D (1984) Petunia hybrida: a short description of the action of 91 genes, their origin and their map location. Plant Mol Biol Rep 2:21–42

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, McCubbin AG, Kao T (2003) Genetic mapping and molecular characterization of the self-incompatibility (S) locus in Petunia inflata. Plant Mol Biol 53:565–580

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 22 Oct 2014

  • Warner RM, Walworth AE (2010) Quantitative inheritance of crop timing traits in interspecific hybrid Petunia populations and interactions with crop quality parameters. J Hered 101:308–316

    Article  PubMed  Google Scholar 

  • Watanabe H, Ando T, Iida S, Suzuki A, Buto K-I, Tsukamoto T, Hashimoto G, Marchesi E (1996) Cross compatibility of Petunia cultivars and P. axillaris with native taxa of Petunia in relation to their chromosome number. J Jpn Soc Hortic Sci 65:625–634

    Article  Google Scholar 

  • Watanabe H, Ando T, Tsukamoto T, Hashimoto G, Marchesi E (2001) Cross-compatibility of Petunia exserta with other Petunia taxa. J Jpn Soc Hortic Sci 70:33–40

    Article  Google Scholar 

  • Zubko E, Adams CJ, Macháèková I, Malbeck J, Scollan C, Meyer P (2002) Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J 29:797–808

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mike Olrich for technical assistance. This research was supported by the US Dept. of Agriculture (USDA) Specialty Crop Block Grant Program and the USDA Specialty Crop Research Initiative (award 2011-01508). R. M .W. and C. S. B. are supported in part by Michigan AgBioResearch and through USDA National Institute of Food and Agriculture, Hatch project numbers MICL02121 and MICL02265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan M. Warner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallejo, V.A., Tychonievich, J., Lin, WK. et al. Identification of QTL for crop timing and quality traits in an interspecific Petunia population. Mol Breeding 35, 2 (2015). https://doi.org/10.1007/s11032-015-0218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0218-4

Keywords

Navigation