Skip to main content
Log in

Ectopic AtCBF3 expression improves freezing tolerance and promotes compact growth habit in petunia

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Freezing temperatures can be devastating for annual bedding plants, including Petunia × hybrida (petunia). The C-repeat binding factor (CBF) transcriptional activator proteins induce expression of a cascade of genes during the process of cold acclimation that results in a transient improvement in freezing tolerance for many plant species. Petunia ‘Mitchell’ plants were transformed with either AtCBF3 from Arabidopsis thaliana or SlCBF1 from Solanum lycopersicum, both under the strong constitutive CaMV 35S promoter. AtCBF3, but not SlCBF1, expression improved basal (non-cold-acclimated) freezing tolerance compared to wild-type plants, and induced expression of putative members of a petunia CBF-regulon. The basal freezing tolerance of AtCBF3 lines was similar to cold-acclimated freezing tolerance for wild-type plants. Additionally, freezing tolerance of AtCBF3 lines improved further following cold acclimation. Constitutive AtCBF3 expression also resulted in a dwarf phenotype, with reductions in plant height, internode length and leaf area, but did not impact leaf mass, resulting in a decreased specific leaf area (mm2 mg−1). Flowering of AtCBF3 lines was also delayed compared to wild-type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of growth-repressing DELLA proteins via its effect on gibberellins metabolism. Plant Cell 20:2117–2129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrett JE, Nell TE (1992) Efficacy of paclobutrazol and uniconazole on four bedding plant species. HortScience 27:896–897

    CAS  Google Scholar 

  • Chen HH, Li PH (1980) Characteristics of cold acclimation and deacclimation in tuber-bearing Solanum species. Plant Physiol 65:1146–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Palma M, Grillo S, Massarelli I, Costa A, Laszlo GB, Leone VA (2008) Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants. Mol Breed 21:15–26

    Article  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilmour SJ, Fowler SG, Thomashow MF (2004) Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767–781

    Article  CAS  PubMed  Google Scholar 

  • Griesbach RJ (2007) Petunia. In: Anderson NO (ed) Flower breeding and genetics. Springer, Dordrecht, pp 301–336

    Google Scholar 

  • Hong B, Ma C, Yang Y, Wang T, Yamaguchi-Shinozaki K, Gao J (2009) Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol Biol 70:231–240

    Article  CAS  PubMed  Google Scholar 

  • Hsieh T-H, Lee J-T, Yang PT, Chiu L-H, Charng Y–Y, Wang Y-C, Chan M-T (2002a) Heterology expression of the Arabidopsis C-Repeat/Dehydration Response Element Binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hsieh T-H, Lee J-T, Charng Y–Y, Chan M-T (2002b) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaglo KR, Kleff S, Amundsen K, Zhang X, Haake V, Zhang J, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • Jones ML, Chaffin GS, Eason JR, Clark DG (2005) Ethylene sensitivity regulates proteolytic activity and cysteine protease gene expression in petunia corollas. J Exp Bot 56:2733–2744

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA (1996) Chalcone synthase cosuppression phenotypes in petunia flowers: comparison of sense versus antisense constructs and single-copy versus complex T-DNA sequences. Plant Mol Biol 31:957–973

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kitashiba H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T (2004) Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J Plant Physiol 161:1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Owens CL, Thomashow MF, Hancock JF, Iezzoni AF (2002) CBF1 orthologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. J Am Soc Hort Sci 127:489–494

    CAS  Google Scholar 

  • Pennycooke JC, Jones ML, Stushnoff C (2003) Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol 133:901–909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pino MT, Skinner JS, Park EJ, Jeknic Z, Hayes PM, Thomashow MF, Chen THH (2007) Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J 5:591–604

    Article  CAS  PubMed  Google Scholar 

  • Pino MT, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen THH (2008) Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant, Cell Environ 31:393–406

    Article  CAS  Google Scholar 

  • Qin F, Sakuma Y, Li J, Liu Q, Li Y-Q, Shinozaki K, Yamaguchi-Shinozaki K (2004) Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45:1042–1052

    Article  CAS  PubMed  Google Scholar 

  • Radoglou KM, Aphalo P, Jarvis PG (1992) Response of photosynthesis, stomatal conductance and water use efficiency to elevated CO2 and nutrient supply in acclimated seedlings of Phaseolus vulgaris L. Ann Bot 70:257–264

    CAS  Google Scholar 

  • Rorat T, Grygorowicz WJ, Irzykowski W, Rey P (2004) Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth. Planta 218:878–885

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schieving F, Poorter H (1999) Carbon gain in a multispecies canopy: the role of specific leaf area and photosynthetic nitrogen-use efficiency in the tragedy of the commons. New Phytol 143:201–211

    Article  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • United States Department of Agriculture (USDA)–National Agricultural Statistics Service (NASS) (2013). Floriculture Crops 2012 Summary. Accessed on 15 Oct 2013. http://usda01.library.cornell.edu/usda/current/FlorCrop/FlorCrop-04-25-2013.pdf

  • Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 4:195–211

    Google Scholar 

  • Walworth AE (2009) Analysis of cold acclimation ability and drought tolerance of Petunia spp. Ph.D. dissertation, Michigan State University

  • Walworth AE, Warner RM (2009) Differential cold acclimation ability of Petunia spp. HortScience 44:1219–1222

    Google Scholar 

  • Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147:1199–1211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Fowler S, Cheng H, Lou Y, Rhee SY, Stockinger EJ, Thomashow MF (2004) Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39:905–919

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge financial support from the American Floral Endowment and Project GREEEN. We thank Dr. Michael Thomashow for the use of his laboratory for the controlled freezing tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan M. Warner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walworth, A.E., Song, Gq. & Warner, R.M. Ectopic AtCBF3 expression improves freezing tolerance and promotes compact growth habit in petunia. Mol Breeding 33, 731–741 (2014). https://doi.org/10.1007/s11032-013-9989-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9989-7

Keywords

Navigation