Skip to main content
Log in

TBP-assisted species and hybrid identification in the genus Passiflora

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

We used the tubulin-based-polymorphism (TBP) method to analyze 45 different species and interspecific hybrids of the genus Passiflora. With regard to genetic characterization, the TBP method is a convenient, fast, simple and reliable tool for assigning a specific polymorphic pattern (i.e., molecular fingerprint) to each of the species and hybrids analyzed. In the case of hybrids, an accurate, easy and immediate recognition of parental contribution is an additional benefit of the TBP method. Molecular data collected using the TBP marker system resulted in a classification of the species of Passiflora that is fully consistent with previous studies performed with a variety of nuclear and chloroplast markers. Similar to those molecular studies, the TBP phylogenetic classification of the various species differs from that obtained using the more restricted number of morphological markers. Overall, this outcome indicates the limited value of these descriptors with respect to genomic diversity when discriminating among different species of Passiflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abreu PO, Souza MM, Santos EA, Pires MV, Pires MM, de Almeida AF (2009) Passion flower hybrids and their use in the ornamental plant market: perspective for sustainable development with emphasis on Brazil. Euphytica 166:307–315

    Article  Google Scholar 

  • Ayele TB, Gailing O, Finkeldey R (2011) Assessment and integration of genetic, morphological and demographic variation in Hagenia abyssinica (Bruce) J.F. Gmel to guide its conservation. J Nat Conserv 19:8–17

    Article  Google Scholar 

  • Bardini M, Lee D, Donini P, Mariani A, Gianì S, Toschi M, Lowe C, Breviario D (2004) TBP, a new tool for testing genetic diversity in plant species based on functionally relevant sequences. Genome 247:281–291

    Article  Google Scholar 

  • Bierne N, Lehnert SA, Bédier E, Bonhomme F, Moore SS (2000) Screening for intron-length polymorphism in penaeid shrimps using exon-primed intron-crossing (EPIC)-PCR. Mol Ecol 9:233–235

    Article  CAS  PubMed  Google Scholar 

  • Braglia L, Manca A, Mastromauro F, Breviario D (2010) cTBP: a successful Intron Length Polymorphism (ILP)-based genotyping method targeted to well defined experimental needs. Diversity 2:572–585

    Article  CAS  Google Scholar 

  • Breviario D, Baird V, Sangoi S, Hilu K, Blumetti P, Gianì S (2007) High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns. Mol Breed 20:249–259

    Article  CAS  Google Scholar 

  • Breviario D, Gianì S, Ponzoni E, Mastromauro F, Morello L (2008) Plant tubulin intronics. Cell Biol Int 32(5):571–573

    Article  CAS  PubMed  Google Scholar 

  • Bugallo V, Cardone S, Pannunzio MJ, Facciuto G (2011) Breeding advances in Passiflora spp. (Passionflower) native to Argentina. Floriculture Ornamental. Biotech 5(1):23–34

    Google Scholar 

  • Cennamo P, Cafasso D (2002) Molecular markers as a tool for the identification of hybrid plane trees. Delpinoa 44:89–94

    Google Scholar 

  • Chen X, Zhang G, Wu W (2011) Investigation and utilization of intron length polymorphisms in conifers. New Forest 41:379–388

    Article  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H et al (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 166:1463–1502

    Article  CAS  PubMed  Google Scholar 

  • Conceição LDHCS, Belo GO, Souza MM, Santos SF, Cerqueira-Silva CBM, Corrêa RX (2011) Confirmation of cross-fertilization using molecular markers in ornamental passion flower hybrids. Genet Mol Res 10(1):47–52

    Article  PubMed  Google Scholar 

  • De Melo NF, Guerra M (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann Bot 92:309–316

    Article  PubMed  Google Scholar 

  • De Melo NF, Cervi AC, Guerra M (2001) Karyology and cytotaxonomy of the genus Passiflora L. (Passifloraceae). Plant Syst Evol 226:69–84

    Article  Google Scholar 

  • Dhawan K, Dhawan S, Sharma A (2004) Passiflora: a review update. J Ethnopharmacol 94:1–23

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos LF, de Oliveira EJ, dos Santos Silva A, de Carvalho FM, Costa JL, Padua JG (2011) ISSR markers as a tool for the assessment of genetic diversity in Passiflora. Biochem Genet 49(7–8):540–554

    Article  CAS  PubMed  Google Scholar 

  • Douaihy B, Sobierajska K, Jasinska AK, Boratynska K, Ok T, Romo A, Machon N, Didukh Y, Bou Dagher-Kharrat M, Boratynski A (2012) Morphological versus molecular markers to describe variability in Juniperus excelsa subsp. excelsa (Cupressaceae). AoB Plants. doi:10.1093/aobpla/pls013

  • Feuillet C, MacDougal JM (2004) A new infrageneric classification of Passiflora. Passiflora 13:34–38

    Google Scholar 

  • Gavazzi F, Casazza AP, Depedro C, Mastromauro F, Breviario D (2012) Technical improvement of the TBP (tubulin-based polymorphism) method for plant species detection, based on capillary electrophoresis. Electrophoresis 33(18):2840–2851

    Article  CAS  PubMed  Google Scholar 

  • Giovannini A, Dente F, De Benedetti L, Nicoletti F, Braglia L, Gavazzi F, Mercuri A (2012) Interspecific hybridization in ornamental passion flowers. Acta Hort 953:111–118

    Google Scholar 

  • Hansen AK, Gilbert LE, Simpson BB, Downie SR, Cervi AC, Jansen RK (2006) Phylogenetic relationships and chromosome number evolution in Passiflora. Syst Bot 31(1):138–150

    Article  Google Scholar 

  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192

    Google Scholar 

  • Killip EP (1938) The American species of Passifloraceae, Field Museum of Natural History 19, Chicago (USA)

  • King LA, Frank A (2003) The ‘Amethyst’ group. Passiflora 13(1):13–16

    Google Scholar 

  • Kosman E, Leonard KJ (2005) Similarity coefficients for molecular markers in studies of genetic relationships between individuals for haploid, diploid, and polyploid species. Mol Ecol 14(2):415–424

    Article  CAS  PubMed  Google Scholar 

  • Liaud MF, Brinkmann H, Cerff R (1992) The beta-tubulin gene family of pea: primary structures, genomic organization and intron-dependent evolution of genes. Plant Mol Biol 8(4):639–651

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2):209–220

    CAS  PubMed  Google Scholar 

  • Mishra MK, Suresh N, Bhat AM, Suryaprakash N, Kumar SS, Kumar A, Jayarama (2011) Genetic molecular analysis of Coffea arabica (Rubiaceae) hybrids using SRAP markers. Rev Biol Trop 59:607–617

    PubMed  Google Scholar 

  • Muschner VC, Lorenz AP, Cervi AC, Bonatto SL, Souza-Chies TI, Salzano FM, Freitas LB (2003) A first molecular phylogenetic analysis of Passiflora (Passifloraceae). Am J Bot 90:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Pissard A, Arbizu C, Ghislain M, Faux AM, Paulet S, Bertin P (2008) Congruence between morphological and molecular markers inferred from the analysis of the intra-morphotype genetic diversity and the spatial structure of Oxalis tuberosa Mol. Genetica 132:71–85

    Article  PubMed  Google Scholar 

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6. doi:10.1186/1746-4811-9-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Podani J (2001) Syntax 2000. Computer program for data analysis in ecology and systematics. User’s manual Scientia Publishing, Budapest, p 53

    Google Scholar 

  • Rieserberg LH, Carter R, Zona S (1990) Molecular test of hypothesized hybrid origin of two diploid Helianthus species (Asteraceae). Evolution 44:1498–1511

    Article  Google Scholar 

  • Rohlf FJ (1998) NTSYSpc numerical taxonomy and multivariate analysis system version 2.0 User Guide. App Biostatistics Inc, Setauket, NY, p 37

    Google Scholar 

  • Santos EA, Souza MM, Abreu PP, da Conceição LDHCS, Araújo IS, Viana AP, de Almeida AAF, Freitas JCO (2012) Confirmation and characterization of interspecific hybrids of Passiflora L. (Passifloraceae) for ornamental use. Euphytica 184(3):389–399

    Article  CAS  Google Scholar 

  • Segura S, Coppens d’Eeckenbrugge G, Bohorquez A, Ollitrault P, Tohme J (2002) An AFLP diversity study of the genus Passiflora focusing on subgenus Tacsonia. Genet Resour Crop Evol 49(2):111–123

    Article  Google Scholar 

  • Smissen RD, Heenan PB (2010) A taxonomic appraisal of the Chatham Island flax (Phormium tenax) using morphological and DNA fingerprint data. Aust Syst Bot 23:371–380

    Google Scholar 

  • Van de Peer Y, De Wachter R (1994) Treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Van Tuyl JM, Lim KB (2003) Interspecific hybridization and polyploidisation as tools in ornamental plant breeding. Acta Hort 612:13–22

    Google Scholar 

  • Viana A, Souza M, Araújo I, Corrêa R, Ahnert D (2010) Genetic diversity in Passiflora species determined by morphological and molecular characteristics. Biol Plantarum 54:535–538

    Article  Google Scholar 

  • Yockteng R, Nadot S (2004) Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). Mol Phylogenet Evol 31:379–396

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to the breeder Maurizio Vecchia for hybrid donations and we thank Marco Ballardini and Fulvio Dente for their help in laboratory work. This work was partially supported by the Ministry of Agricultural, Food and Forestry Policies, Italy, Project RGV-FAO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Breviario.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Dataset of Passiflora samples used for morphological analysis. See Table 1 for OTU codes and Table 2 for character list (DOCX 20 kb)

Online Resource 2

Pictures explaining some of the selected Passiflora morphological characters listed in Table 2 (JPG 1999 kb)

Online Resource 3

Principal Component Analysis. Percentage and cumulative variances and eigen-vectors on the first four components for each character in 41 Passiflora morphotypes (DOCX 14 kb)

Online Resource 4

Polyacrylamide gel electrophoresis of the TBP amplification profile for β-tubulin intron I in different Passiflora genotypes. Sample codes are described in Table 1. Marker sizes were estimated by comparison to molecular mass standards indicated at both sides (JPG 1268 kb)

Online Resource 5

Summary of the numeric data output provided by AB 310 Genetic Analyzer system. Each hybrid is placed in a row between the respective parents, that are indicated in bold character. S stays for sizes, expressed in nucleotide base pairs and R refers to the Relative Fluorescence Unit for the signal intensity of the corresponding peak (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braglia, L., Gavazzi, F., Giovannini, A. et al. TBP-assisted species and hybrid identification in the genus Passiflora . Mol Breeding 33, 209–219 (2014). https://doi.org/10.1007/s11032-013-9945-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9945-6

Keywords

Navigation