Skip to main content
Log in

The ScAACT1 gene at the Q alt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Soluble aluminum (Al3+) is a major constraint to plant growth in highly acidic soils, which comprise up to 50% of the world’s arable land. The primary mechanism of Al resistance described in plants is the chelation of Al3+ cations by release of organic acids into the rhizosphere. Candidate aluminum tolerance genes encoding organic acid transporter of the ALMT (aluminum-activated malate transporter) and MATE (multi-drug and toxic compound extrusion) families have been characterized in several plant species. In this study, we have isolated in five different cultivars the rye ScAACT1 gene, homolog to barley aluminum activated citrate transporter HvAACT1. This gene mapped to the 7RS chromosome arm, 25 cM away from the ScALMT1 aluminum tolerance gene. The gene consisted of 13 exons and 12 introns and encodes a predicted membrane protein that contains the MatE domain and at least seven putative transmembrane regions. Expression of the ScAACT1 gene is Al-induced, but there were differences in the levels of expression among the cultivars analyzed. A new quantitative trait locus for Al tolerance in rye that co-localizes with the ScAACT1 gene was detected in the 7RS chromosome arm. These results suggest that the ScAACT1 gene is a candidate gene for increased Al tolerance in rye. The phylogenetic relationships between different MATE proteins are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aniol A (1984) Introduction of aluminum tolerance into aluminum sensitive wheat cultivars. Z Pflanzen J Plant Breed 93:331–339

    CAS  Google Scholar 

  • Aniol A, Madej L (1996) Genetic variation for aluminium tolerance in rye. Vortr Pflanzen 35:201–211

    Google Scholar 

  • Benito C, Silva-Navas J, Fontecha G, Hernández-Riquer MV, Eguren M, Salvador N, Gallego FJ (2010) From the rye Alt3 and Alt4 aluminum tolerance loci to orthologous genes in other cereals. Plant Soil 327:107–120

    Article  CAS  Google Scholar 

  • Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669–682

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminium toxicity and tolerance in plants. Plant Physiol 107:315–321

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminium tolerance in wheat (Triticum aestivum L.) II. Aluminium-stimulated excretion of malic-acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminium tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett 581:2255–2262

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Doerge RW, Rebai A (1996) Significance thresholds for QTL interval mapping tests. Heredity 77:459–464

    Article  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205

    Article  PubMed  CAS  Google Scholar 

  • Edmon C, Shigaki T, Ewert S, Nelson MD, Connorton JM, Chalova V, Noordally Z, Pittman JK (2009) Comparative analysis of CAX2-like cation transporters indicates functional and regulatory diversity. Biochem J 418:145–154

    Article  Google Scholar 

  • Famoso AN, Clark RT, Shaff JE, Craft E, McCouch SR, Kochian LV (2010) Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiol 153:1678–1691

    Article  PubMed  CAS  Google Scholar 

  • Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández-Ríquer MV, Gallego FJ (2007) Candidate gene identifcation of an aluminum-activated organic acid transporter gene at the Alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theor Appl Genet 114:249–260

    Article  PubMed  CAS  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    Article  PubMed  CAS  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gallego FJ, Benito C (1997) Genetic control of aluminium tolerance in rye (Secale cereale L.). Theor Appl Genet 95:393–399

    Article  CAS  Google Scholar 

  • Hoekenga OA, Magalhaes JV (2011) Mechanisms of aluminum tolerance. In: Costa de Oliveira A, Varshney RK (eds) Root genomics, 1st edn. Springer, The Netherlands, pp 133–153

    Chapter  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA, Cançado GM, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF (2009) A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21:655–667

    Article  PubMed  CAS  Google Scholar 

  • Kim CK, Han JS, Lee HS, Oh JY, Shigaki T, Park SH, Hirschi K (2006) Expression of an Arabidopsis CAX2 variant in potato tubers increases calcium levels with no accumulation of manganese. Plant Cell Rep 25:1226–1232

    Article  PubMed  CAS  Google Scholar 

  • Kinraide TB, Parker DR, Zobel RW (2005) Organic acid secretion as a mechanism of aluminium resistance: a model incorporating the root cortex, epidermis, and the external unstirred layer. J Exp Bot 56:1853–1865

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminium toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kuzniar A, van Ham RCHJ, Pongor S, Leunissen JAM (2008) The quest for orthologs: findings the corresponding gene across genomes. Trends Genet 24:539–551

    Article  PubMed  CAS  Google Scholar 

  • Li XF, Ma JF, Matsumoto HPC (2000) Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol 123:1537–1543

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57:389–399

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Taketa S, Yang ZM (2000) Aluminium tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiol 122:687–694

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the poaceae. Genetics 167:1905–1914

    Article  PubMed  CAS  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  PubMed  CAS  Google Scholar 

  • Matos M, Camacho MV, Pérez-Flores V, Pernaute B, Pinto-Carnide O, Benito C (2005) A new aluminum tolerance gene located on rye chromosome arm 7RS. Theor Appl Genet 111:360–369

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46

    Article  PubMed  CAS  Google Scholar 

  • Pereira JF, Zhou G, Delhaize E, Richardson T, Zhou M, Ryan PR (2010) Engineering greater aluminium resistance in wheat by over-expressing TaALMT1. Ann Bot 106:205–214

    Article  PubMed  CAS  Google Scholar 

  • Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Tyerman SD, Sasaki T, Furuichi T, Yamamoto Y, Zhang WH, Delhaize E (2011) The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J Exp Bot 62:9–20

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminium-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Ryan PR, Delhaize E, Hebb DM, Ogihara Y, Kawaura K, Noda K, Kojima T, Toyoda A, Matsumoto H, Yamamoto Y (2006) Sequence upstream of the wheat (Triticum aestivum L.) ALMT1 gene and its relationship to aluminum resistance. Plant Cell Physiol 47:1343–1354

    Article  PubMed  CAS  Google Scholar 

  • Shi BJ, Gustafson JP, Button J, Miyazaki J, Pallotta M, Gustafson N, Zhou H, Langridge P, Collins NC (2009) Physical analysis of the complex rye (Secale cereale L.) Alt4 aluminium (aluminum) tolerance locus using a whole-genome BAC library of rye cv. Blanco. Theor Appl Genet 119:695–704

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • van Ooijen JW (2004) MapQTL5 Software for the mapping of quantitative trait loci in experimental populations. Kyazma B. V. Wageningen, The Netherlands

    Google Scholar 

  • van Ooijen JW, Voorrips RE (2001) JoinMap® 3.0, Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Wang JP, Raman H, Zhou MX, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 115:265–276

    Article  PubMed  CAS  Google Scholar 

  • Wood S, Sebastian K, Scherr SJ (2000) Pilot analysis of global ecosystems: agroecosystems. Rosen, Washington

    Google Scholar 

  • Xia J, Yamaji N, Kasai T, Ma JF (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci USA 107:18381–18385

    Article  PubMed  CAS  Google Scholar 

  • Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349

    Article  PubMed  CAS  Google Scholar 

  • Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305

    Article  PubMed  CAS  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2010) Isolation and characterisation of two MATE genes in rye. Funct Plant Biol 37:296–303

    Article  CAS  Google Scholar 

  • Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J doi: 10.1111/j.1365-313X.2011.04757.x

  • Zhao Z, Ma JF, Sato K, Takeda K (2003) Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.). Planta 217:794–800

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants AGL 2008-03049/AGR from the Ministerio de Educación y Ciencia de España and PR34/07-1581 from the Santander/Complutense. J. Silva-Navas is a recipient of the Contratos de Personal Investigador de Apoyo (Comunidad de Madrid). GeneBank accessions: EU399684, GQ403694, EU790562, EU790563, EU790564, GQ403695, GQ403693.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Gallego.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 382 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva-Navas, J., Benito, C., Téllez-Robledo, B. et al. The ScAACT1 gene at the Q alt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.). Mol Breeding 30, 845–856 (2012). https://doi.org/10.1007/s11032-011-9668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9668-5

Keywords

Navigation