Skip to main content
Log in

Inheritance and mapping of the ore gene controlling the quantity of β-carotene in cucumber (Cucumis sativus L.) endocarp

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The metabolic precursor of vitamin A, β-carotene, is essential for human health. The gene(s) controlling β-carotene quantity (QβC) has been introgressed from Xishuangbanna gourd (XIS, possessing β-carotene; Cucumis sativus L. var. xishuangbannanesis Qi et Yuan; 2n = 2x = 14) into cultivated cucumber (no β-carotene; Cucumis sativus L.). To determine the inheritance of QβC in cucumber fruit endocarp, F1 progeny and a set of 124 F7 recombinant inbred lines (RILs) derived from the cultivated cucumber line CC3 and XIS line SWCC8 were evaluated for QβC during 2009 and 2010 in Nanjing, China. Segregation analysis revealed that endocarp QβC of greenhouse-grown fruit was controlled by a single recessive gene. Further, marker analysis indicated the gene controlling QβC was linked to seven SSR markers on linkage group 3, where their order was SSR20710SSR19511SSR15419SSR07706oreSSR23231SSR11633SSR20270. These markers and the putative candidate gene were mapped to cucumber chromosome 3DS. An evaluation of 30 genetically diverse cucumber lines indicated that marker SSR07706 has utility in further genetic analyses of the QβC orange endocarp gene, designated ore. Moreover, the markers defined herein may have utility for marker-assisted selection directed towards the development of cucumber germplasm with high fruit β-carotene content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bohn M, Groh S, Khairallah MM, Hoisington DA, Utz HF, Melchinger AE (2001) Re-evaluation of the prospects of marker-assisted selection for improving insect resistance against Diatraea spp. in tropical maize by cross validation and independent validation. Theor Appl Genet 103:1059–1067

    Article  Google Scholar 

  • Charters YM, Robertson A, Wilkinson MJ, Ramsay G (1996) PCR analysis of oilseed rape cultivars (Brassic napus L.ssp. oleifera) using 50-anchored simple sequence repeat (SSR) primers. Theor Appl Genet 92:442–447

    Article  CAS  Google Scholar 

  • Chen JF, Zhang SL, Zhang XG (1994) The xishuangbanna gourd (Cucumis sativus var. xishuangbananesis Qi et Yuan), a traditionally cultivated plant of the Hanai people, Xishuangbanna, Yunnan, China. Cucurbit Genetics Cooperative Report 17:18–20

    Google Scholar 

  • Clark MS (1997) Plant molecular biology: a laboratory manual. Springer, Berlin

    Google Scholar 

  • Clayberg CD (1992) Interaction and linkage test of flesh color genes in Cucumis melo L. Cucurbit Genet Coop Rep 15:53

    Google Scholar 

  • Cuevas HE, Staub JE, Simon PW, Zalapa JE, McCreight JD (2008) Mapping of genetic loci that regulated quantity of β-carotene in fruit of US Western Shipping melon (Cucumis melo L.). Theor Appl Genet 117:1345–1359

    Article  PubMed  CAS  Google Scholar 

  • Cuevas HE, Staub JE, Simon PW, Zalapa JE (2009) A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene-associated flesh color in melon (Cucumis melo L.). Theor Appl Genet 119:741–756

    Article  PubMed  CAS  Google Scholar 

  • Cuevas HE, Song H, Staub JE, Simon PW (2010) Inheritance of beta-carotene-associated flesh color in cucumber (Cucumis sativus L.) fruit. Euphytica 171:301–311

    Article  CAS  Google Scholar 

  • Davies J, Berzonsky WA, Leach GD (2006) A comparison of marker-assisted and phenotypic selection for high grain protein content in spring wheat. Euphytica 152:117–134

    Article  CAS  Google Scholar 

  • Davuluri GR, Tuinen AV, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HMJ, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  PubMed  CAS  Google Scholar 

  • Eathington SR, Dudley JW, Rufener GK (1997) Usefulness of marker-QTL associations in early generation selection. Crop Sci 37:1686–1693

    Article  Google Scholar 

  • Fan ZC, Robbins MD, Staub JE (2006) Population development by phenotypic selection with subsequent marker-assisted selection for line extraction in cucumber (Cucumis sativus L.). Theor Appl Genet 112:843–855

    Article  PubMed  CAS  Google Scholar 

  • Fazio G, Staub JE (2003) Comparative analysis of response to phenotypic and marker-assisted selection for multiple lateral branching incucumber (Cucumis sativus L.). Theor Appl Genet 107:875–883

    Article  PubMed  CAS  Google Scholar 

  • Fazio G, Staub JE, Chung SM (2002) Development and characterization of PCR markers in cucumber (Cucumis sativus L.). J Am Soc Hort Sci 127:545–557

    CAS  Google Scholar 

  • Fazio G, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Progr Lipid Res 43:228–265

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Loper J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of Lycopersicon esculentum × Lycopersicum parvixorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET, Yan JB, Buckler ES (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  PubMed  CAS  Google Scholar 

  • Just BJ, Santos CAF, Fonseca MEN, Boiteux LS, Oloizia BB, Simon PW (2007) Carotenoid biosynthesis structural genes in carrots (Daucus carota): isolation, sequence characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114:693–704

    Article  PubMed  CAS  Google Scholar 

  • Kandlakunta B, Rajendran A, Thingnganing L (2008) Carotene content of some common (cereals, pulses, vegetables, spices and condiments) and unconventional sources of plant origin. Food Chem 106:85–89

    Article  CAS  Google Scholar 

  • Katzir N, Danin-Poleg Y, Tzuri G, Karchi Z, Lavi U, Cregan PB (1996) Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor Appl Genet 93:1282–1290

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing linkage maps with MAPMAKER/Exp Version 3.0. A tutorial reference manual, 3rd edn. Whitehead Institute for Medical Res, Cambridge

    Google Scholar 

  • Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran M, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Küpper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DNA-J cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. Plant Cell 18:3594–3605

    Article  PubMed  CAS  Google Scholar 

  • Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE (2002) The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. J Nutr 132:518S–524S

    PubMed  Google Scholar 

  • Michelmore RM, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Navazio JP (1994) Utilization of high carotene cucumber germplasm for genetic improvement of nutritional quality. Ph.D. Thesis, University of Wisconsin-Madison

  • Navazio JP, Simon PW (2001) Diallel analysis of high carotenoid content in cucumbers. J Am Soc Hort Sci 126:100–104

    CAS  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  PubMed  CAS  Google Scholar 

  • Qi CZ, Yuan ZZ, Li YX (1983) A new type of cucumber—Xishuangbanna cucumber. Acta Hort Sin 10:259–264

    Google Scholar 

  • Ren Y, Zhang ZH, Liu JH, Staub JE, Han YH, Cheng ZC, Li XF, Lu JY, Miao H, Kang HX, Xie BY, Gu XF, Wang XW, Du YC, Jin WW, Huang SW (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4:e5795

    Article  PubMed  Google Scholar 

  • Robbins MD, Staub JE (2009) Comparative analysis of marker-assisted and phenotypic selection for yield components in cucumber. Theor Appl Genet 119:621–634

    Article  PubMed  Google Scholar 

  • Robbins MD, Casler M, Staub JE (2008) Pyramiding QTL for multiple lateral branching in cucumber using nearly isogenic lines. Mol Breed 22:131–139

    Article  Google Scholar 

  • Royal Horticultural Society (2005) The Royal Horticultural Society colour chart. The Royal Horticultural Society, London

    Google Scholar 

  • Santos CAF, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrots roots. Mol Genet Genomics 268:122–129

    Article  PubMed  CAS  Google Scholar 

  • Simon PW (1992) Genetic improvement of vegetable carotene content. In: Bills DD, Kung S-D (eds) Biotechnology and nutrition. Proceedings of the 3rd international symposium. Butterworth-Heinemann, Boston, pp 291–300

  • Simon PW, Navazio JP (1997) Early orange mass 400, early orange mass 402, and late orange mass 404: high-carotene cucumber germplasm. HortScience 32:144–145

    CAS  Google Scholar 

  • Simon PW, Wolff XY (1987) Carotenes in typical and dark orange carrots. J Agric Food Chem 35:1017–1022

    Article  CAS  Google Scholar 

  • Staub JE, Sun Z, Chung SM, Lower RL (2007) Evidence for colinearity among genetic linkage maps in cucumber. Hort Sci 42:20–27

    CAS  Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8

    Article  CAS  Google Scholar 

  • Underwood BA (2004) Vitamin A deficiency disorders: international efforts to control a preventable “Pox”. J Nutr 134:231S–236S

    PubMed  CAS  Google Scholar 

  • Wong JC, Lambert RJ, Wurtzel ET, Roncherford TJ (2004) QTL and candidate genes phytoene synthase and ζ-carotene desaturase associated with the accumulation of carotenoids in maize. Theor Appl Genet 108:349–359

    Article  PubMed  CAS  Google Scholar 

  • Yang SL, Pu H, Liu PY, Walters TW (1991) Preliminary studies on Cucumis sativus var. xishuangbannanesis. Cucurbit Genet Coop Rep 14:29–31

    Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (30972007), Science and Technology Infrastructure Construction Project of Jiangsu Province of China (BM2008008), and State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing agricultural university, China, and Key Laboratory of Southern Vegetable Crop Genetic Improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bo, K., Song, H., Shen, J. et al. Inheritance and mapping of the ore gene controlling the quantity of β-carotene in cucumber (Cucumis sativus L.) endocarp. Mol Breeding 30, 335–344 (2012). https://doi.org/10.1007/s11032-011-9624-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9624-4

Keywords

Navigation