Skip to main content
Log in

QTLs for early vigor of tropical maize

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A strong photosynthetic performance and rapid leaf development, are important indicators of vigorous early growth. The aim of this study was to (1) evaluate the tropical maize (Zea mays L.) inbred lines CML444 and SC-Malawi for their photosynthetic performance at different growth stages and (2) assess quantitative trait loci (QTL) of photosynthesis-related traits in their 236 recombinant inbred lines at the heterotrophic growth stage. CML444 had a higher leaf chlorophyll (SPAD) content than SC-Malawi. Ten QTLs were found for the quantum efficiency of photosystem II (ΦPSII; four), SPAD (three) and the specific leaf area (SLA; three). The relevance of seedling QTLs for ΦPSII, SPAD and SLA for yield formation is emphasized by seven collocations (bins 5.01, 7.03, 8.05) with QTLs for kernel number and grain yield under field conditions. QTLs for SPAD at the V2 and at the reproductive stage did not collocate, indicating differences in the genetic control of SPAD at different growth stages. Knowing which loci affect SLA, SPAD and ΦPSII simultaneously and which do not will help to optimize light harvest by the canopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arunyanark A, Jogloy S, Akkasaeng C, Vorasoot N, Kesmala T, Rao RCN, Wright GC, Patanothai A (2008) Chlorophyll stability is an indicator of drought tolerance in peanut. J Agron Crop Sci 194:113–125

    Article  CAS  Google Scholar 

  • Barkan A, Miles D, Taylor WC (1986) Chloroplast gene-expression in nuclear, photosynthetic mutants of maize. EMBO J 5:1421–1427

    CAS  PubMed  Google Scholar 

  • Basten CJ, Weir BS, Zing ZB (2002) QTL CARTOGRAPHER: a reference manual and tutorial for QTL mapping. Department of Statistics, North Carolina State University, USA

    Google Scholar 

  • Bourdu R, Grégory N (1983) Etude comparée du début de la croissance chez divers génotypes de maïs. Agronomie 3:761–770

    Article  Google Scholar 

  • Butler D (2006) asreml: asreml() fits the linear mixed mode. R package version 2.00

  • Cooper CS, Mac Donald PW (1970) Energetics of early seeling growth in corn (Zea mays L.). Crop Sci 10:136–139

    Google Scholar 

  • Earl HJ, Tollenaar M (1997) Maize leaf absorptance of photosynthetically active radiation and its estimation using a chlorophyll meter. Crop Sci 37:436–440

    Google Scholar 

  • Fischer RA (1979) Growth and water limitation to dryland wheat yield in Australia—physiological framework. J Austr Inst Agric Sci 45:83–94

    Google Scholar 

  • Fracheboud Y, Ribaut JM, Vargas M, Messmer R, Stamp P (2002) Identification of quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 53:1967–1977

    Article  CAS  PubMed  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize. Plant Mol Biol 56:241–253

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais J-M, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Hashemidezfouli A, Herbert SJ (1992) Intensifying plant-density response of corn with artificial shade. Agron J 84:547–551

    Article  Google Scholar 

  • Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  CAS  PubMed  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109:618–629

    Article  CAS  PubMed  Google Scholar 

  • Hund A, Frascaroli E, Leipner J, Jompuk C, Stamp P, Fracheboud Y (2005) Cold tolerance of the photosynthetic apparatus: pleiotropic relationship between photosynthetic performance and specific leaf area of maize seedlings. Mol Breed 16:321–331

    Article  CAS  Google Scholar 

  • Hund A, Richner W, Soldati A, Fracheboud Y, Stamp P (2007) Root morphology and photosynthetic performance of maize inbred lines at low temperature. Eur J Agron 27:52–61

    Article  Google Scholar 

  • Hund A, Ruta N, Liedgens M (2009a) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 318:311–325

    Article  CAS  Google Scholar 

  • Hund A, Trachsel S, Stamp P (2009b) Development of a phenotyping platform for the non-invasive measurement of early root growth. Plant Soil (in press)

  • Jompuk C, Fracheboud Y, Stamp P, Leipner J (2005) Mapping of quantitative trait loci associated with chilling tolerance in maize (Zea mays L.) seedlings grown under field conditions. J Exp Bot 56:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Kalapos T, vandenBoogaard R, Lambers H (1996) Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. Plant Soil 185:137–149

    Article  CAS  Google Scholar 

  • Lopez-Santillan JA, Ortiz-Cereceres J, Del Carmen Mendoza-Castillo M, de los Santos GG, Martinez-Garza A (2005) Influence of the weight of the embryo and endosperm on the initial post-emergent development of maize seedlings. Phyton (Buenos Aires) 2005:155–160

    Google Scholar 

  • Martienssen R, Barkan A, Taylor WC, Freeling M (1990) Somatically heritable switches in the DNA modification of mu-transposable elements monitored with a suppressible mutant in maize. Genes Dev 4:331–343

    Article  CAS  PubMed  Google Scholar 

  • Messmer R (2006) The genetic dissection of key factors involved in the drought tolerance of tropical maize (Zea mays L.). Diss. ETH No. 16695, Zurich, Switzerland. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=16695

  • Miles D (1980) Mutants of higher plants maize Zea mays. In: San Pietro A (ed) Methods in enzymology, vol 69 part C photosynthesis and nitrogen fixation Xxv + 894p, Academic Press, New York, NY, USA; London, England, Illus:P3–23

  • Miles D, Metz JG (1985) The role of nuclear genes of maize Zea-Mays in chloroplast development. In: Freeling M (ed) UCLA (University of California Los Angeles) Symposia on molecular and cellular biology new series, vol 35 plant genetics; Third Annual Arco Plant Cell Research Institute-UCLA Symposium on Plant Biology, Keystone, CO, USA, Apr 13–19, 1985 Xxvi + 861p Alan R Liss, Inc: New York, NY, USA Illus:585–598

  • Miles CD, Markwell JP, Thornber JP (1979) Effect of nuclear mutation in maize on photosynthetic activity and content of chlorophyll-protein complexes. Plant Physiol 64:690–694

    Article  CAS  PubMed  Google Scholar 

  • Miller KR (1980) A chloroplast membrane lacking photosystem-I—changes in unstacked membrane regions. Biochim BiophyS Acta 592:143–152

    Article  CAS  PubMed  Google Scholar 

  • Paponov IA, Sambo P, Erley GSA, Presterl T, Geiger HH, Engels C (2005) Grain yield and kernel weight of two maize genotypes differing in nitrogen use efficiency at various levels of nitrogen and carbohydrate availability during flowering and grain filling. Plant Soil 272:111–123

    Article  CAS  Google Scholar 

  • Piekielek WP, Fox RH (1992) Use of a chlorophyll meter to predict sidedress nitrogen requirements for maize. Agron J 84:59–65

    Article  CAS  Google Scholar 

  • Pommel B (1990) Effects of seed weight and sowing depth on growth and development of maize seedlings. Agronomie 10:699–708

    Article  Google Scholar 

  • Poorter H, Van der Werf A (1998) Is inherent variation in RGR determined by LAR at low irradiance and by NAR at high irradiance? A review of herbaceous species. In: Lambers H, Poorter H, Van Vuuren MMI (eds) Inherent variation in plant growth physiological mechanisms and ecological consequences. Backhuys Publishers, Leiden, pp 309–332

    Google Scholar 

  • Rawson HM, Gardner PA, Long MJ (1987) Sources of variation in specific leaf-area in wheat grown at high-temperature. Aust J Plant Physiol 14:287–298

    Article  Google Scholar 

  • Rebetzke GJ, Botwright TL, Moore CS, Richards RA, Condon AG (2004) Genotypic variation in specific leaf area for genetic improvement of early vigour in wheat. Field Crops Res 88:179–189

    Article  Google Scholar 

  • Ribaut JM, Betràn FJ, Monneveux P, Setter T (2008) Drought tolerance in maize. In: Hake SC, Bennetzen JL (eds) Hand book of maize: its biology, Springer, Netherlands, pp 311–344 (in press)

  • Richards RA (2000) Selectable traits to increase crop photosynthesis and yield of grain crops. J Exp Bot 51:447–458

    Article  CAS  PubMed  Google Scholar 

  • Richards RA, Townleysmith TF (1987) Variation in leaf-area development and its effect on water-use, yield and harvest index of droughted wheat. Aust J Agric Res 38:983–992

    Article  Google Scholar 

  • Richards RA, Rebetzke GJ, Condon AG, van Herwaarden AF (2002) Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    Article  PubMed  Google Scholar 

  • Sarker AM, Rahman MS, Paul NK (1999) Effect of soil moisture on relative leaf water content, chlorophyll, proline and sugar accumulation in wheat. J Agron Crop Sci 183:225–229

    Article  CAS  Google Scholar 

  • Sheshshayee MS, Bindumadhava H, Rachaputi NR, Prasad TG, Udayakumar M, Wright GC, Nigam SN (2006) Leaf chlorophyll concentration relates to transpiration efficiency in peanut. Ann Appl Biol 148:7–15

    Article  CAS  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R foundation for statistical computing. In: Computing RFfS (ed), Vienna, Austria

  • Thomas H, Howarth CJ (2000) Five ways to stay green. J Exp Bot 51:329–337

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Kang MS, Moreno O (1999) Genetic analyses of grain-filling rate and duration in maize. Field Crops Res 61:211–222

    Article  Google Scholar 

  • Wright GC, Hammer GL (1994) Distribution of nitrogen and radiation use efficiency in peanut canopies. Aust J Agric Res 45:565–574

    Article  Google Scholar 

  • Xu W, Rosenow DT, Nguyen HT (2000) Stay green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breed 119:365–367

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Yunbi Xu for supplying the mapping population, Susanne Hochmann and David Brändli for technical assistance and Jann Röder for programming the scanning software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Trachsel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trachsel, S., Messmer, R., Stamp, P. et al. QTLs for early vigor of tropical maize. Mol Breeding 25, 91–103 (2010). https://doi.org/10.1007/s11032-009-9310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9310-y

Keywords

Navigation