Skip to main content
Log in

Crop model based QTL analysis across environments and QTL based estimation of time to floral induction and flowering in Brassica oleracea

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Studying quantitative traits is complicated due to genotype by environment interactions. One strategy to overcome these difficulties is to combine quantitative trait loci (QTL) and ecophysiological models, e.g. by identifying QTLs for the response curves of adaptive traits to influential environmental factors. A B. oleracea DH-population segregating for time to flowering was cultivated at different temperature regimes. Composite interval mapping was carried out on the three parameters of a model describing time to flowering as a function of temperature, i.e. on the intercept and slope of the response of time to floral induction to temperature and on the duration from transition to flowering. The additive effects of QTLs detected for the parameters have been used to estimate time to floral induction and flowering in the B. oleracea DH-population. The combined QTL and crop model explained 66% of the phenotypic variation for time to floral induction and 56% of the phenotypic variation for time to flowering. Estimation of time to floral induction and flowering based on environment specific QTLs explained 61 and 41% of the phenotypic variation. Results suggest that flowering time can be predicted effectively by coupling QTL and crop models and that using crop modelling tools for QTL analysis increases the power of QTL detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Axelsson T, Shavorskaya O, Lagercrantz U (2001) Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome 44:856–864

    Article  CAS  Google Scholar 

  • Baenziger PS, McMaster GS, Wilhelm WW, Weiss A, Hays CJ (2004) Putting genes into genetic coefficients. Field Crops Res 90:133–143

    Article  Google Scholar 

  • Blázquez MA (2006) The right time and place for making flowers. Science 309:1024–1025

    Article  CAS  Google Scholar 

  • Bohuon EJR, Ramsay LD, Craft JA, Arthur AE, Marshall DF, Lydiate DJ, Kearsey MJ (1998) The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea. Genetics 150:393–401

    PubMed  CAS  Google Scholar 

  • Boote KJ, Kropff MJ, Bindraban BS (2001) Physiology and modelling of traits in crop plants: implications for genetic improvement. Agric Syst 70:395–420

    Article  Google Scholar 

  • Caicedo AL, Stinchcombe JR, Olsen KM, Schmitt J, Purugganan MD (2004) Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc Natl Acad Sci USA 101:15670–15675

    Article  PubMed  CAS  Google Scholar 

  • Grevsen K (1998) Effects of temperature on head growth of broccoli (Brassica oleracea L. var. italica): parameter estimates for a predictive model. J Hortic Sci Biotechnol 73:235–244

    Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    PubMed  CAS  Google Scholar 

  • Hammer GL, Sinclair TR, Chapman S, van Oosterom E (2004) On systems thinking, systems biology and the in silico plant. Plant Physiol 134:909–911

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Becker HC, Tigerstedt PMA (1998) Quantitative and ecological aspects of plant breeding. Chapman & Hall, London

    Google Scholar 

  • Hoogenboom GJ, White W, Acosta-Gallegos J, Gaudiel RG, Myers JR, Silbernagel MJ (1997) Evaluation of a crop simulation model that incorporates gene action. Agron J 89:613–620

    Article  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants: where are we now? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  • Kim KW, Shin JH, Moon J, Kim M, Lee J, Park MC, Lee I (2003) The function of the flowering time gene AGL20 is conserved in crucifers. Mol Cells 16:136–141

    PubMed  CAS  Google Scholar 

  • Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20

    Article  PubMed  CAS  Google Scholar 

  • Lee M (1998) Genome projects and gene pools: new germplasm for plant breeding? Proc Natl Acad Sci USA 95:2001–2004

    Article  PubMed  CAS  Google Scholar 

  • Leon AJ, Lee M, Andrade FH (2001) Quantitative trait loci for growing degree days to flowering and photoperiod response in sunflower (Helianthus annuus L.). Theor Appl Genet 102:497–503

    Article  Google Scholar 

  • Lin SI, Wang JG, Poon SY, Su CL, Wang SS, Chiou TJ (2005) Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiol 137:1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Malosetti M, Visser RGF, Celis-Gamboa C, van Eeuwijk A (2006) QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato. Theor Appl Genet 113:288–300

    Article  PubMed  CAS  Google Scholar 

  • Mayes S, Parsley K, Sylvester-Bradley R, May S, Foulkes J (2005) Integrating genetic information into plant breeding programmes: how will we produce varieties from molecular variation, using bioinformatics? Ann Appl Biol 146:223–237

    Article  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49:585–593

    Article  PubMed  Google Scholar 

  • Podlich DW, Cooper M (1998) QU-GENE: a simulation platform for quantitative analysis of genetic models. Bioinformatics 14:632–653

    Article  PubMed  CAS  Google Scholar 

  • Quilot B, Kervella J, Genard M, Lescourret F (2005) Simulating genotypic variation of fruit quality in an advanced peach x Prunus davidiana cross. J Exp Bot 56:3071–3081

    Article  PubMed  CAS  Google Scholar 

  • Rae AM, Howell EC, Kearsey MJ (1999) More QTL for fowering time revealed by substitution lines in Brassica oleracea. Heredity 83:586–596

    Article  PubMed  Google Scholar 

  • Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu F (2003) Combining QTL analysis and an ecophysiological model to analyse the genetic variability of the responses of leaf growth to temperature and water deficit. Plant Physiol 131:664–675

    Article  PubMed  CAS  Google Scholar 

  • Reymond M, Muller B, Tardieu F (2004) Dealing with the genotype × environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. J Exp Bot 55:2461–2472

    Article  PubMed  CAS  Google Scholar 

  • Schranz ME, Osborn TC (2000) Novel flowering time variation in resynthesized polyploid Brassica napus. Genetics 91:242–246

    CAS  Google Scholar 

  • Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled haploid mapping populations. Theor Appl Genet 100:75–81

    Article  CAS  Google Scholar 

  • Sebastian RL, Kearsey MJ, King GJ (2002) Identification of quantitative trait loci controlling developmental characteristics of Brassica oleracea L. Theor Appl Genet 104:601–609

    Article  PubMed  CAS  Google Scholar 

  • Slafer GA (2003) Genetic basis of yield as viewed from a crop physiologist’s perspective. Ann Appl Biol 142:117–128

    Article  Google Scholar 

  • Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 8:9–14

    Article  PubMed  CAS  Google Scholar 

  • Travasso MI, Magrin GO (1998) Utility of CERES-Barley under Argentine conditions. Field Crops Res 57:329–333

    Article  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a programm for composite interval mapping of QTL. J Quant Trait Loci 2:1–5

    Google Scholar 

  • Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Welch SM, Roe JL, Dong Z (2003) A genetic neural network model of flowering time control in Arabidopsis thaliana. Agron J 95:71–81

    Article  Google Scholar 

  • Wiebe HJ (1990) Vernalization of vegetable crops—a review. Acta Hortic 267:323–328

    Google Scholar 

  • Yin X, Chasalow S, Dourleijn CJ, Stam P, Kropff MJ (2000) Coupling estimated effects of QTLs for physiological traits to a crop growth model: predicting yield variation among recombinant inbred lines in barley. Heredity 85:539–549

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, Tang J, Qi C, Liu T (2005a) Model analysis of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56:959–965

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Struik PC, van Eeuwijk FA, Stam P, Tang J (2005b) QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. J Exp Bot 56:967–976

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge G. J. King, Wellesbourne, UK and Michael J. Kearsey, Birmingham, UK for providing the DH-population and the marker data. We thank Katharina Meyer for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Uptmoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uptmoor, R., Schrag, T., Stützel, H. et al. Crop model based QTL analysis across environments and QTL based estimation of time to floral induction and flowering in Brassica oleracea . Mol Breeding 21, 205–216 (2008). https://doi.org/10.1007/s11032-007-9121-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-007-9121-y

Keywords

Navigation