Skip to main content
Log in

Design and synthesis of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N′-phenylacethydrazide derivatives as potential fungicides

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N′-phenylacethydrazide derivatives were designed, synthesized and evaluated for their antifungal activities against Fusarium graminearum (Fg), Rhizoctonia solani (Rs), Botrytis cinerea (Bc) and Colletotrichum capsici (Cc). The bioassay results in vitro showed that most of the title compounds exhibited impressive antifungal activities against the above plant fungi. Particularly, the compounds 5c, 5f, 5g, 5i, 5m and 5p displayed desirable anti-Rs activities, with the corresponding EC50 values of 0.37, 0.32, 0.49, 0.50, 0.46 and 0.45 µg/mL, respectively, which are superior to the positive control carbendazim (0.55 µg/mL). Further in vivo bioassay results showed that the anti-Rs activity of title compound 5f at 200 µg/mL reached 95.84% on detached rice leaves and 93.96% on rice plants. Featuring convenient synthesis, novel structures and desirable antifungal activity, these 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N′-phenylacethydrazide derivatives could be further studied as the potential candidates of novel agricultural fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ray M, Ray A, Dash S, Mishra A, Achary KG, Nayak S, Singh S (2017) Fungal disease detection in plants: traditional assays, novel diagnostic techniques and biosensors. Biosens Bioelectron 87:708–723. https://doi.org/10.1016/j.bios.2016.09.032

    Article  CAS  PubMed  Google Scholar 

  2. McMullen M, Bergstrom G, Wolf ED, Dill-Macky R, Hershman D, Shaner G, Sanford DV (2012) A unified effort to fight an enemy of wheat and baeley: fusarium heat blight. Plant Dis 96:1712–1728. https://doi.org/10.1094/PDIS-03-12-0291-FE

    Article  PubMed  Google Scholar 

  3. Wang L, Li C, Zhang Y, Qiao C, Ye Y (2013) Synthesis and biological evaluation of benzofuroxan derivatives as fungicides against phytopathogenic fungi. J Agric Food Chem 61:8632–8640. https://doi.org/10.1021/jf402388x

    Article  CAS  PubMed  Google Scholar 

  4. Jackson LS (2009) Chemical food safety issues in the United States: past, present, and future. J Agric Food Chem 57:8161–8170. https://doi.org/10.1021/jf900628u

    Article  CAS  PubMed  Google Scholar 

  5. Seiber JN, Kleinschmidt LA (2011) Contributions of pesticide residue chemiatry to improving food and environmental safety: past and present accomplishments and future challenges. J Agric Food Chem 59:7536–7543. https://doi.org/10.1021/jf103902t

    Article  CAS  PubMed  Google Scholar 

  6. Sparks TC, Lorsbach BA (2017) Perspectives on the agrochemical industry and agrochemical discovery. Pest Manag Sci 73:672–677. https://doi.org/10.1002/ps.4457

    Article  CAS  PubMed  Google Scholar 

  7. Qian X, Lee PW, Cao S (2010) China: forward to the green pesticides via a basic research program. J Agric Food Chem 58:2613–2623. https://doi.org/10.1021/jf904098w

    Article  CAS  PubMed  Google Scholar 

  8. El-Shorbagi AN, El-Naggar M, Tarazi H, Chaudhary S, Abdu-Allan H, Hersi F, Omar H (2018) Bis-(5-substituted-2-thiono-1,3,5-thiadiazinan-3-yl) butane as a scaffold of anti-proliferative activity, blended by a multicomponent process. Med Chem Res 27:1103–1110. https://doi.org/10.1007/s00044-018-2133-9

    Article  CAS  Google Scholar 

  9. Mao L, Jiang H, Wang Q, Yan D, Cao A (2017) Efficacy of soil fumigation with dazoment for controlling ginger bacterial wilt (Ralstonia solanacearum) in China. Crop Prot 100:111–116. https://doi.org/10.1016/j.cropro.2017.06.013

    Article  CAS  Google Scholar 

  10. Semreen MH, El-Shorbagi AN, Al-Tel TH, Alsalahat IMM (2010) Targeting γ-aminobutyric acid (GABA) carriers to the brain: potential relevance as antiepileptic pro-drugs. Med Chem 6:144–149. https://doi.org/10.2174/1573406411006030144

    Article  CAS  PubMed  Google Scholar 

  11. Vicentini CB, Forlani G, Manfrini M, Romagnoli C, Mares D (2002) Development of new fungicides against Magnaporthe grisea: synthesis and biological activity of pyrazolo[3,4-d][1,3]thiazine, pyrazolo[1,5-c][1,3,5]thiadiazine, and pyrazolo[3,4-d]pyrimidine derivatives. J Agric Food Chem 50:4839–4845. https://doi.org/10.1021/jf0202436

    Article  CAS  PubMed  Google Scholar 

  12. Arshad N, Hashim J, Irfanullah Minhas MA, Aslam J, Ashraf T, Hamid SZ, Iqbal T, Javed S (2018) New series of 3,5-disubstituted tetrahydro-2H-1,3,5-thiadiazine thione (THTT) derivatives: synthesis and potent antileishmanial activity. Bioorg Med Chem Lett 28:3251–3254. https://doi.org/10.1016/j.bmcl.2018.07.045

    Article  CAS  PubMed  Google Scholar 

  13. Coro J, Atherton R, Little S, Wharton H, Yardley V, Alvarez A Jr., Suarez M, Perez R, Rodriguez H (2006) Alkyl-linked bis-THTT derivatives as potent in vitro trypanocidal agent. Bioorg Med Chem Lett 16:1312–1315. https://doi.org/10.1016/j.bmcl.2005.11.060

    Article  CAS  PubMed  Google Scholar 

  14. Ji X, Zhong Z, Chen X, Xing R, Liu S, Wang L, Li P (2007) Preparation of 1,3,5-thiadiazine-2-thione derivatives of chitosan and their potential antioxidant activity in vitro. Bioorg Med Chem Lett 17:4275–4279. https://doi.org/10.1016/j.bmcl.2007.05.020

    Article  CAS  PubMed  Google Scholar 

  15. Katiyar D, Tiwari VK, Tripathi RP, Srivastava A, Chaturvedi V, Srivastava R, Srivastava BS (2003) Synthesis and antimycrobacterial activity of 3,5-disubstituted thiadiazine thiones. Bioorg Med Chem 11:4369–4375. https://doi.org/10.1016/S0968-0896(03)00480-2

    Article  CAS  PubMed  Google Scholar 

  16. Coro J, Perez R, Rodriguez H, Suarez M, Vega C, Rolon M, Montero D, Nogal JJ, Gomez-Barrio A (2005) Synthesis and antiprotozoan evaluation of new alkyl-linked bis(2-thioxo-[1,3,5]thiadiazinan-3-yl) carboxylic acids. Bioorg Med Chem 13:3413–3421. https://doi.org/10.1016/j.bmc.2005.03.009

    Article  CAS  PubMed  Google Scholar 

  17. Vicentini CB, Guccione S, Giurato L, Ciaccio R, Mares D, Forlani G (2005) Pyrazole derivatives as photosynthetic electron transport inhibitors: new leads and structure-activity relationship. J Agric Food Chem 53:3848–3855. https://doi.org/10.1021/jf0500029

    Article  CAS  PubMed  Google Scholar 

  18. El-Shorbagi AN (1994) Model for delivery of amines through incorporation into a tetrahydro-2H-1,3,5-thiadiazine-2-thione structure. Eur J Med Chem 29:11–15. https://doi.org/10.1016/0223-5234(94)90120-1

    Article  CAS  Google Scholar 

  19. Aboul-Fadl T, El-Shorbagi A (1996) New prodrug approach for amino acids and amino-acid-like drugs. Eur J Med Chem 31:165–169. https://doi.org/10.1016/0223-5234(96)80450-8

    Article  CAS  Google Scholar 

  20. Nakamura M, Noda S, Kosugi M, Ishiduka N, Mizukoshi K, Taniguchi M, Nemoto S (2010) Determination of dithiocarbamates and milneb residues in foods by gas chromatography-mass spectrometry. Food Hyg Saf Sci 51:213–219. https://doi.org/10.3358/shokueishi.51.213

    Article  CAS  Google Scholar 

  21. Lam WW, Kim JH, Sparks SE, Quistad GB, Casida JE (1993) Metabolism in rats and mice of the soil fumigants metham, methyl isothiocyanate, and dazoment. J Agric Food Chem 41:1497–1502. https://doi.org/10.1021/jf00033a027

    Article  CAS  Google Scholar 

  22. Meyer F, Ueberschaar N, Dahse HM, Hertweck C (2013) Synthesis and biological evaluation of hydradomycin analogues. Bioorg Med Chem Lett 23:6043–6045. https://doi.org/10.1016/j.bmcl.2013.09.033

    Article  CAS  PubMed  Google Scholar 

  23. Khalid W, Badshah A, Khan A, Nadeem H, Ahmed S (2018) Synthesis, characterization, molecular docking evaluation, antiplatelet and anticoagulant actions of 1,2,4-triazole hydrazone and sulphonamide novel derivatives. Chem Cent J 11:1–16. https://doi.org/10.1186/s13065-018-0378-5

    Article  CAS  Google Scholar 

  24. Park EB, Kim KJ, Jeong HR, Lee JK, Kim HJ, Lee HH, Lim JW, Shin JS, Koeberle A, Werz O, Lee KT, Lee JY (2016) Synthesis, structure determination, and biological evaluation of phenylsulfonyl hydrazide derivatives as potential anti-inflammatory agents. Bioorg Med Chem Lett 26:5193–5197. https://doi.org/10.1016/j.bmcl.2016.09.070

    Article  CAS  PubMed  Google Scholar 

  25. Soares RR, Silva JMF, Carlos BC, Fonseca CC, Souza LSA, Lopes FV, Dias RMP, Moreira POL, Abramo C, Viana GHR, Varotti FP, Silva AD, Scopel KKG (2015) New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg Med Chem Lett 25:2308–2313. https://doi.org/10.1016/j.bmcl.2015.04.014

    Article  CAS  PubMed  Google Scholar 

  26. Carvalho SA, Silva EF, Souza MVN, Lourenco MCS, Vicente FR (2008) Synthesis and antimycobacterial evaluation of new trans-cinnamic acid hydrazide derivatives. Bioorg Med Chem Lett 18:538–541. https://doi.org/10.1016/j.bmcl.2007.11.091

    Article  CAS  PubMed  Google Scholar 

  27. Reheim MAMA, Baker SM (2017) Synthesis, characterization and in vitro antimicrobial activity of novel fused pyrazolo[3,4-c]pyridazine, pyrazolo[3,4-d]pyrimidine, thieno[3,2-c]pyrazole and pyrazolo[3′,4′:4,5]thieno[2,3-d]pyrimidine derivatives. Chem Cent J 112:1–14. https://doi.org/10.1186/s13065-017-0339-4

    Article  Google Scholar 

  28. Yang L, Wang P, Wu JF, Yang LM, Wang RR, Pang W, Li YG, Shen YM, Zheng YT, Li X (2016) Design, synthesis and anti-HIV-1 evaluation of hydrazide-based peptidomimetics as selective gelatinase inhibitors. Bioorg Med Chem 24:2125–2136. https://doi.org/10.1016/j.bmcl.2016.03.043

    Article  CAS  PubMed  Google Scholar 

  29. Yu G, Luo L, Chen S, He F, Xie Y, Luo D, Xue W, Wu J (2018) Synthesis and insecticidal activity of novel diacyhydrazines derivatives containing a N-pyrazolepyrazole moiety. ChemistrySelect 3:10991–10995. https://doi.org/10.1002/slct.201802434

    Article  CAS  Google Scholar 

  30. Huffman CW, Godar EM, Ohki K, Torgeson DC (1968) Synthesis of hydrazine derivatives as plant growth inhibitors. J Agric Food Chem 16:1041–1046. https://doi.org/10.1021/jf60160a035

    Article  CAS  Google Scholar 

  31. Zhao Q, Shang J, Huang Z, Wang K, Bi F, Huang R, Wang Q (2008) Synthesis and insecticidal activities of novel N-sulfenyl-N′-tert-butyl-N, N′-diacylhydrazines. 2. N-substituted phenoxysulfenate derivatives. J Agric Food Chem 56:5254–5259. https://doi.org/10.1021/jf800740z

    Article  CAS  PubMed  Google Scholar 

  32. Yan T, Yu S, Liu P, Liu Z, Wang B, Xiong L, Li Z (2012) Design, synthesis and biological activities of novel benzoyl hydrazines containing pyrazole. Chin J Chem 30:919–923. https://doi.org/10.1002/cjoc.201100347

    Article  CAS  Google Scholar 

  33. Wang X, Dai ZC, Chen YF, Cao LL, Yan W, Li SK, Wang JX, Zhang ZG, Ye YH (2017) Synthesis of 1,2,3-triazole hydrazide derivatives exhibiting anti-phytopathogenic activity. Eur J Med Chem 126:171–182. https://doi.org/10.1016/j.ejmech.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  34. Yu X, Teng P, Zhang YL, Xu ZJ, Zhang MZ, Zhang WH (2018) Design, synthesis and antifungal activity evaluation of coumarin-3-carboxamide derivatives. Fitoterapia 127:387–395. https://doi.org/10.1016/j.fitote.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Wang M, Yan J, Chen M, Wang A, Mei Y, Si W, Yang C (2018) Design, synthesis and 3D-QSAR of new quinazolin-4(3H)-one derivatives containing a hydrazide moiety as potential fungicides. ChemistrySelect 3:10663–10669. https://doi.org/10.1002/slct.201801575

    Article  CAS  Google Scholar 

  36. Chen M, Wang XF, Wang SS, Feng YX, Chen F, Yang CL (2012) Synthesis, characterization and fungicidal activities of novel fluorinated 3,5-disubstituted-4H-1,2,4-triazol-4-amines. J Fluorine Chem 135:323–329. https://doi.org/10.1016/j.jfluchem.2011.12.015

    Article  CAS  Google Scholar 

  37. Li LX, Jiao J, Wang XB, Chen M, Fu XC, Si WJ, Yang CL (2018) Synthesis, characterization, and antifungal activity of novel benzo[4,5]imidazo[1,2-d][1,2,4]triazine derivatives. Molecules 23:746. https://doi.org/10.3390/molecules23040746

    Article  CAS  PubMed Central  Google Scholar 

  38. Du H, Fan Z, Yang L, Bao X (2018) Synthesis of novel quinazolin-4(3H)-one derivatives containing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety as effective agricultural bactericides against the pathogen Xanthomonas oryzae pv. oryzae. Mol Divers 22:1–10. https://doi.org/10.1007/s11030-017-9782-3

    Article  CAS  PubMed  Google Scholar 

  39. Yang L, Ge S, Huang J, Bao X (2018) Synthesis of novel (E)-2-(4-(1H-1,2,4-triazol-1-yl)styryl-4-(alkyl/arylmethyleneoxy)quinazoline derivatives as antimicrobial agents. Mol Divers 22:71–82. https://doi.org/10.1007/s11030-017-9792-1

    Article  CAS  PubMed  Google Scholar 

  40. Fan Z, Shi J, Bao X (2018) Synthesis and antimicrobial evaluation of novel 1,2,4-triazole thioether derivatives bearing a quinazoline moiety. Mol Divers 22:657–667. https://doi.org/10.1007/s11030-018-9821-8

    Article  CAS  PubMed  Google Scholar 

  41. Wang X, Ren Z, Wang M, Chen M, Lu A, Si W, Yang C (2018) Design and synthesis of novel 3-(thiophen-2-yl)-1,5-dihydro-2H-pyrrol-2-one derivatives bearing a hydrazone moiety as potential fungicides. Chem Cent J 12:83. https://doi.org/10.1186/s13065-018-0452-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang ZJ, Zeng Y, Jiang ZY, Shu BS, Sethuraman V, Zhong GH (2018) Design, synthesis, fungicidal property and QSAR studies of novel β-carbolines containing urea, benzoylthiourea and benzoylurea for the control of rice sheath blight. Pest Manag Sci 74:1736–1746. https://doi.org/10.1002/ps.4873

    Article  CAS  PubMed  Google Scholar 

  43. Echemendia R, Fernandez O, Coro J, Suarez M, Rivera DG (2017) A versatile approach to hybrid thiadiazine-based molecules by the Ugi four-component reaction. Tetrahedron Lett 58:1784–1787. https://doi.org/10.1016/j.tetlet.2017.03.075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the grants from the National Natural Science Foundation of China (No. 31772209) and the Fundamental Research Funds for the Central Universities of China (No. KYTZ201604).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunlong Yang or Yimin Song.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2936 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Fu, X., Yan, J. et al. Design and synthesis of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N′-phenylacethydrazide derivatives as potential fungicides. Mol Divers 23, 573–583 (2019). https://doi.org/10.1007/s11030-018-9891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9891-7

Keywords

Navigation