Skip to main content
Log in

Design, synthesis and biological evaluation of novel flavone Mannich base derivatives as potential antibacterial agents

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of novel Mannich base derivatives of flavone containing benzylamine moiety was synthesized using the Mannich reaction. The results of antifungal activity are not ideal, but its antifungal effect has a certain increase compared to flavonoids. After that, four bacteria were used to test antibacterial experiments of these compounds; compound 5g (MIC = 0.5, 0.125 mg/L) showed significant inhibitory activity against Staphylococcus aureus and Salmonella gallinarum compared with novobiocin (MIC = 2, 0.25 mg/L). Compound 5s exhibited broad spectrum antibacterial activity (MIC = 1, 0.5, 2, 0.05 mg/L) against four bacteria. The selected compounds 5g and 5s exhibit potent inhibition against Topo II and Topo IV with IC50 values (0.25–16 mg/L). Molecular docking model showed that the compounds 5g and 5s can bind well to the target by interacting with amino acid residues. It will provide some valuable information for the commercial antibacterial agents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tanaka Y, Sasaki N, Ohmiya A (2010) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749. https://doi.org/10.1111/j.1365-313X.2008.03447.x

    Article  CAS  Google Scholar 

  2. Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Therapeut 96:67. https://doi.org/10.1016/S0163-7258(02)00298-X

    Article  CAS  Google Scholar 

  3. Shaw LJ, Morris P, Hooker JE (2010) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880. https://doi.org/10.1111/j.1462-2920.2006.01141.x

    Article  CAS  Google Scholar 

  4. Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–80. https://doi.org/10.1016/S0300-483X(02)00196-8

    Article  CAS  PubMed  Google Scholar 

  5. Friedman M (2010) Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol Nutr Food Res 51:116–134. https://doi.org/10.1002/mnfr.200600173

    Article  CAS  Google Scholar 

  6. Cushnie TPT, Lamb AJ (2005) Errata for “Antimicrobial activity of flavonoids” [Int. J. Antimicrob. Agents 26 (2005) 343–356]. Int J Antimicrob Ag 27:181

    Article  CAS  Google Scholar 

  7. Echeverría J, Opazo J, Mendoza L, Urzúa A, Wilkens M (2017) Structure–activity and lipophilicity relationships of selected antibacterial natural flavones and flavanones of Chilean Flora. Molecules 22:608. https://doi.org/10.3390/molecules22040608

    Article  CAS  PubMed Central  Google Scholar 

  8. Tair A, Weiss E-K, Palade LM, Loupassaki S, Makris DP, Ioannou E et al (2014) Origanum species native to the island of Crete: in vitro antioxidant characteristics and liquid chromatography–mass spectrometry identification of major polyphenolic components. Nat Prod Res 28:1284–1287. https://doi.org/10.1080/14786419.2014.896011

    Article  CAS  PubMed  Google Scholar 

  9. Jadoon S, Karim S, Bin Asad MHH, Akram MR, Khan AK, Malik A et al (2015) Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. Oxid Med Cell Longev. https://doi.org/10.1155/2015/709628

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xia JF, Gao JJ, Inagaki Y, Kokudo N, Nakata M, Tang W (2013) Flavonoids as potential anti-hepatocellular carcinoma agents: recent approaches using HepG2 cell line. Drug Discov Therapeut 7:1–8. https://doi.org/10.5582/ddt.2013.ddt.v7.1.1

    Article  CAS  Google Scholar 

  11. Rao YJ, Sowjanya T, Thirupathi G, Kotapalli SS (2018) Synthesis and biological evaluation of novel flavone/triazole/benzimidazole hybrids and flavone/isoxazole-annulated heterocycles as antiproliferative and antimycobacterial agents. Mol Divers. https://doi.org/10.1007/s11030-018-9833-4

    Article  PubMed  Google Scholar 

  12. Kagechika H, Kawachi E, Hashimoto Y, Shudo K (1989) Retinobenzoic acids. 2. Structure-activity relationships of chalcone-4-carboxylic acids and flavone-4′-carboxylic acids. J Med Chem 32:834. https://doi.org/10.1021/jm00124a016

    Article  CAS  PubMed  Google Scholar 

  13. Zwaagstra ME, Timmerman H, Abdoelgafoer RS, Zhang MQ (1996) Synthesis of carboxylated flavonoids as new leads for LTD4 antagonists. Eur J Med Chem 31:861–874. https://doi.org/10.1016/S0223-5234(97)89849-2

    Article  CAS  Google Scholar 

  14. Krauss J, Stadler M, Bracher F (2017) Synthesis and structure–activity relationships of novel benzylamine-type antifungals as butenafine-related antimycotics. Arch Pharm. https://doi.org/10.1002/ardp.201600342

    Article  Google Scholar 

  15. Kaya B, Saglik BN, Levent S, Ozkay Y, Kaplancikli ZA (2016) Synthesis of some novel 2-substituted benzothiazole derivatives containing benzylamine moiety as monoamine oxidase inhibitory agents. J Enzyme Inhib Med Chem 31:1654–1661. https://doi.org/10.3109/14756366.2016.1161621

    Article  CAS  PubMed  Google Scholar 

  16. Sui Z, Nguyen VN, Altom J, Fernandez J, Hilliard JJ, Bernstein JI et al (1999) Synthesis and topoisomerase inhibitory activities of novel aza-analogues of flavones 1. Eur J Med Chem 34:381–387. https://doi.org/10.1016/S0223-5234(99)80087-7

    Article  CAS  Google Scholar 

  17. Bernard FX, Sablé S, Cameron B, Provost J, Desnottes JF, Crouzet J et al (1997) Glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob Agents Ch 41:992–998

    Article  CAS  Google Scholar 

  18. Sun X, Hu CQ, Huang XD, Dong JC (2003) Mannich reaction of baicalein. Chin J Org Chem 23:81–85

    CAS  Google Scholar 

  19. Helgren TR, Sciotti RJ, Lee P, Duffy S, Avery VM, Igbinoba O et al (2015) The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs. Bioorg Med Chem Lett 25:327–332. https://doi.org/10.1016/j.bmcl.2014.11.039

    Article  CAS  PubMed  Google Scholar 

  20. Morales JC, Zurita D, Penadés S (1998) Carbohydrate–carbohydrate interactions in water with glycophanes as model systems. J Org Chem 63:9212–9222

    Article  CAS  Google Scholar 

  21. Lehmann PF (1999) P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover and R.H. Yolken, eds. Manual of clinical microbiology, 7th ed. Mycopathologia 146:107–108. https://doi.org/10.1023/a:1007025717379

  22. Jorgensen JH (1993) NCCLS methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard. Infect Dis Clin North Am 7:393–409

    CAS  PubMed  Google Scholar 

  23. Aragade P, Maddi V, Khode S, Palkar M, Ronad P, Mamledesai S et al (2009) Synthesis and antibacterial activity of a new series of 3–3-(substituted phenyl)-1-isonicotinoyl-1h-pyrazol-5-yl-2h-chromen-2-one derivatives. Arch Pharm 342:361–366. https://doi.org/10.1002/ardp.200800156

    Article  CAS  Google Scholar 

  24. Sato K, Inoue Y, Fujii T, Aoyama H, Inoue M, Mitsuhashi S (1986) Purification and properties of DNA gyrase from a fluoroquinolone-resistant strain of Escherichia coli. Antimicrob Agents Ch 30:777–780

    Article  CAS  Google Scholar 

  25. Peng H, Marians KJ (1993) Escherichia coli topoisomerase IV. Purification, characterization, subunit structure, and subunit interactions. J Biol Chem 268:24481–24490

    CAS  PubMed  Google Scholar 

  26. Dai YJ, Wang QA, Zhang XL, Jia SR, Zheng H, Feng DC et al (2010) Molecular docking and QSAR study on steroidal compounds as aromatase inhibitors. Eur J Med Chem 45:5612–5620. https://doi.org/10.1016/j.ejmech.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  27. Wu G, Robertson DH, Iii CLB, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER—a CHARMm-based MD docking algorithm. J Co Ch 24:1549–1562. https://doi.org/10.1002/jcc.10306

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The Basic Science Research Fund Program of ICBR (1632017005), Natural Science Foundation of Education Committee of Anhui Province (KJ2018A0162) and National Key R&D Program of China (Project No. 2017YFD0600805). We are grateful to Prof. Hai-Liang Zhu (State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing) for computational molecular docking assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Tang or Hai-Qun Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4518 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, XH., Liu, H., Ren, ZL. et al. Design, synthesis and biological evaluation of novel flavone Mannich base derivatives as potential antibacterial agents. Mol Divers 23, 299–306 (2019). https://doi.org/10.1007/s11030-018-9873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9873-9

Keywords

Navigation