Skip to main content
Log in

Synthesis and three-dimensional quantitative structure-activity relationship study of quinazoline derivatives containing a 1,3,4-oxadiazole moiety as efficient inhibitors against Xanthomonas axonopodis pv. citri

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of quinazoline derivatives containing a 1,3,4-oxadiazole moiety were synthesized and evaluated for their antibacterial activities against Xanthomonas axonopodis pv. citri (Xac) and Ralstonia solanacearum (Rs). Antibacterial bioassays indicated that most of target compounds exhibited significant antibacterial activities against Xac and Rs in vitro. Strikingly, compounds 6d6i, 6m6r and 6u6x showed antibacterial activity against Xac, with \(\hbox {EC}_{50}\) values ranging from 14.42 to 38.91 \(\upmu \)g/mL, which are better than that of bismerthiazol (39.86 \(\upmu \)g/mL). Based on the antibacterial activity against Xac, comparative molecular filed analysis and comparative molecular similarity index analysis models were generated to investigate the structure-activity relationship of title compounds against Xac. The analytical results indicated that the above models exhibited good predictive accuracy and could be used as practical tools for guiding the design and synthesis of more potent quinazoline derivatives containing a 1,3,4-oxadiazole moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang X, Li P, Li Z, Yin J, He M, Xue W, Chen Z, Song B (2013) Synthesis and bioactivity evaluation of novel arylimines containing a 3-aminoethyl-2-[(\(p\)-trifluoromethoxy)anilino] -4(\(3H)\)-quinazolinone moiety. J Agric Food Chem 61:9575–9582. https://doi.org/10.1021/jf4031939

    Article  CAS  PubMed  Google Scholar 

  2. Wang PY, Zhou L, Zhou J, Wu ZB, Xue W, Song BA, Yang S (2016) Synthesis and antibacterial activity of pyridinium-tailored 2,5-substituted-1,3,4-oxadiazole thioether/sulfoxide/sulfone derivatives. Bioorg Med Chem Lett 26:1214–1217. https://doi.org/10.1016/j.bmcl.2016.01.029

    Article  CAS  PubMed  Google Scholar 

  3. Xu WM, Han FF, He M, Hu DY, He J, Yang S, Song BA (2012) Inhibition of tobacco bacterial wilt with sulfone derivatives containing an 1,3,4-oxadiazole moiety. J Agric Food Chem 60:1036–1041. https://doi.org/10.1021/jf203772d

    Article  CAS  PubMed  Google Scholar 

  4. Halby L, Menon Y, Rilova E, Pechalrieu D, Massion V, Faux C, Bouhlei MA, David-Cordonnier MH, Novosad N, Aussagues Y, Samson A, Lacroix L, Ausseil F, Fleury L, Guianvarch D, Ferroud C, Arimondo PB (2017) Rational design of bisubstrate-type analogues as inhibitors of DNA methyltransferases in cancer cells. J Med Chem 60:4665–4679. https://doi.org/10.1021/acs.jmedchem.7b00176

    Article  CAS  PubMed  Google Scholar 

  5. Venkatesham A, Saudi M, Kaptein S, Neyts J, Rozenski J, Froeyen M, Aerschot AV (2017) Aminopurine and aminoquinazoline scaffolds for development of potential dengue virus inhibitors. Eur J Med Chem 126:101–109. https://doi.org/10.1016/j.ejmech.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  6. Abuelizz HA, Dib RE, Marzouk M, Anouar EH, Maklad YA, Attia HN, Al-Salahi R (2017) Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives. Molecules 22:1094–1107. https://doi.org/10.3390/molecules22071094

    Article  CAS  PubMed Central  Google Scholar 

  7. Gilson PR, Tan C, Jarman KE, Lowes KN, Curtis JM, Nguyen W, Rago AED, Bullen HE, Prinz B, Duffy S, Baell JB, Hutton CA, Subroux HJ, Crabb BS, Avery VM, Cowman AF, Sleebs BE (2017) Optimization of 2-anilino 4-amino substituted quinazolines into potent antimalarial agents with oral in vivo activity. J Med Chem 60:1171–1188. https://doi.org/10.1021/acs.jmedchem.6b01673

    Article  CAS  PubMed  Google Scholar 

  8. Hu J, Zhang Y, Dong L, Wang Z, Chen L, Liang D, Shi D, Shan X, Liang G (2015) Design, synthesis, and biological evaluation of novel quinazoline derivatives as anti-inflammatory agents against lipopolysaccharide-induced acute lung injury in rats. Chem Biol Drug Des 85:672–684. https://doi.org/10.1111/cbdd.12454

    Article  CAS  PubMed  Google Scholar 

  9. Mohamed T, Rao PP (2017) 2,4-Disubstituted quinazolines as amyloid-\(\beta \) aggregation inhibitors with dual cholinesterase inhibition and antioxidant properties: development and structure-activity relationship (SAR) studies. Eur J Med Chem 126:823–843. https://doi.org/10.1016/j.ejmech.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  10. Yu G, Li Z, Tang L, Xiong Q (2014) Synthesis and evaluation of 2,4-disubstituted quinazoline derivatives with potent anti-angiogenesis activities. Molecules 19:8916–8932. https://doi.org/10.3390/molecules19078916

    Article  CAS  PubMed  Google Scholar 

  11. Desroches J, Kieffer C, Primas N, Hutter S, Gellis A, Ei-Kashef H, Rathelot P, Verhaeghe P, Azas N, Vanelle P (2017) Discovery of hit-molecules targeting plasmodium falciparum through a global SAR study of the 4-substituted-2-trichloromethylquinazoline antiplasmodial scaffold. Eur J Med Chem 125:68–86. https://doi.org/10.1016/j.ejmech.2016.09.029

    Article  CAS  PubMed  Google Scholar 

  12. Patel AB, Chikhalia KH, Kumari P (2015) Access to antimycobacterial and anticancer potential of some fused quinazolines. Res Chem Intermed 41:4439–4455. https://doi.org/10.1007/s11164-014-1542-8

    Article  CAS  Google Scholar 

  13. Ma Y, Liu F, Yan K, Song BA, Yang S, Hu DY, Jin LH, Xue W (2008) Synthesis and antifungal bioactivity of 6-bromo-4-alkylthioquinazoline derivatives. Chin J Organ Chem 28:1268–1272

    CAS  Google Scholar 

  14. Luo H, Liu J, Jin L, Hu D, Chen Z, Yang S, Wu J, Song B (2013) Synthesis and antiviral bioactivity of novel (1E, 4E)-1-aryl-5-(2-(quinazolin-4-yloxy)phenyl)-1,4-pentadien-3-one derivatives. Eur J Med Chem 63:662–669. https://doi.org/10.1016/j.ejmech.2013.02.035

    Article  CAS  PubMed  Google Scholar 

  15. Wan Z, Hu D, Li P, Xie D, Gan X (2015) Synthesis, antiviral bioactivity of novel 4-thioquinazoline derivatives containing chalcone moiety. Molecules 20:11861–11874. https://doi.org/10.3390/molecules200711861

    Article  CAS  PubMed  Google Scholar 

  16. Wu Z, Zhang J, Chen J, Pan J, Zhao L, Liu D, Zhang A, Chen J, Hu D, Song B (2017) Design, synthesis, antiviral bioactivity and three-dimensional quantitative structure-activity relationship study of novel ferulic acid ester dderivatives containing quinazoline moiety. Pest Manag Sci 73:2079–2089. https://doi.org/10.1002/ps.4579

    Article  CAS  PubMed  Google Scholar 

  17. Xiao H, Li P, Hu D, Song BA (2014) Synthesis and anti-TMV activity of novel \(\beta \)-amino acid ester derivatives containing quinazoline and benzothiazole moieties. Bioorg Med Chem Lett 24:3452–3454. https://doi.org/10.1016/j.bmcl.2014.05.073

    Article  CAS  PubMed  Google Scholar 

  18. Xu GF, Song BA, Bhadury PS, Yang S, Zhang PQ, Jin LH, Xue W, Hu DY, Lu P (2007) Synthesis and antifungal activity of novel S-substituted 6-fluoro-4-alkyl(aryl)thioquinazoline derivatives. Bioorg Med Chem 15:3768–3774. https://doi.org/10.1016/j.bmc.2007.03.037

    Article  CAS  PubMed  Google Scholar 

  19. Yang L, Bao XP (2017) Synthesis of novel 1,2,4-triazole derivatives containing the quinazolinylpiperridinyl moiety and N-(substituted phenyl)acetamide group as efficient bactericides against the phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. RSC Adv 7:34005–34011. https://doi.org/10.1039/c7ra04819j

    Article  CAS  Google Scholar 

  20. Bhattacharyya J, Banerjee H, Bhattacharyya A (2003) Photodecomposition of acaricide, fenazaquin, in aqueous alcoholic solution. J Agric Food Chem 51:4013–4016. https://doi.org/10.1021/jf034034c

    Article  CAS  PubMed  Google Scholar 

  21. Dawson WAJM, Bateman GL (2000) Sensitivity of fungi from cere al roots to fluquinconazole and their suppressiveness towards take-all on plants with or without fluquinconazole seed treatment in a controlled environment. Plant Pathol 49:477–486. https://doi.org/10.1046/j.1365-3059.2000.00479.x

    Article  CAS  Google Scholar 

  22. Wang PY, Zhou L, Zhou J, Fang HS, Wu ZB, Xue W, Song BA, Yang S (2017) Potent antibacterial agents: pyridinium-functionalized amphiphiles bearing 1,3,4-oxadiazole scaffolds. Chem Pap 71:1013–1018. https://doi.org/10.1007/s11696-016-0021-7

    Article  CAS  Google Scholar 

  23. Xu W, He J, He M, Han F, Chen X, Pan Z, Wang J, Tong M (2011) Synthesis and antifungal activity of novel sulfone derivatives containing 1,3,4-oxadiazole moieties. Molecules 16:9129–9141. https://doi.org/10.3390/molecules16119129

    Article  CAS  PubMed  Google Scholar 

  24. Chen X, Gan X, Chen J, Chen Y, Wang Y, Hu D, Song B (2017) Synthesis and nematicidal activity of novel 1,3,4-oxadiazole (thiadiazole) thioether derivatives containing trifluorobuten moiety. Chin J Organ Chem 37:2343–2351. https://doi.org/10.6023/cioc201703022

    Article  CAS  Google Scholar 

  25. Gan X, Hu D, Li P, Wu J, Chen X, Xue W, Song B (2016) Design, synthesis, antiviral activity and three-dimensional quantitative structure-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety. Pest Manag Sci 72:534–543. https://doi.org/10.1002/ps.4018

    Article  CAS  PubMed  Google Scholar 

  26. Liu ZM, Yang GF, Qin XH (2001) Synthesis and biological activities of novel diheterocyclic compounds containing 1,2,4-triazolo[1,5-\(\alpha \)]pyrimidine and 1,3,4-oxadizole. J Chem Technol Biotechnol 76:1154–1158. https://doi.org/10.1002/jctb.500

    Article  CAS  Google Scholar 

  27. Li P, Yin J, Xu W, Wu J, He M, Hu D, Yang S, Song B (2013) Synthesis, antibacterial activities, and 3D-QSAR of sulfone derivatives containing 1,3,4-oxadiazole moiety. Chem Biol Drug Des 82:546–556. https://doi.org/10.1111/cbdd.12181

    Article  CAS  PubMed  Google Scholar 

  28. Shi L, Li P, Wang W, Gao M, Wu Z, Song X, Hu D (2015) Antibacterial activity and mechanism of action of sulfone derivatives containing 1,3,4-oxadiazole moieties on rice bacterial leaf blight. Molecules 20:11660–11675. https://doi.org/10.3390/molecules200711660

    Article  CAS  PubMed  Google Scholar 

  29. Li P, Shi L, Yang X, Yang L, Chen XW, Wu F, Shi QC, Xu WM, He M, Hu DY, Song BA (2014) Design, synthesis, and antibacterial activity against rice bacterial leaf blight and leaf streak of 2,5-substituted-1,3,4-oxadiazole/thiadiazole sulfone derivative. Bioorg Med Chem Lett 24:1677–1680. https://doi.org/10.1016/j.bmcl.2004.02.060

    Article  CAS  PubMed  Google Scholar 

  30. Su S, Zhou X, Liao G, Qi P, Jin L (2017) Synthesis and antibacterial evaluation of new sulfone derivatives containing 2-aroxymethyl-1,3,4-oxadiazole/thiadiazole moiety. Molecules 22:64–81. https://doi.org/10.3390/molecules22010064

    Article  CAS  Google Scholar 

  31. Wang PY, Chen L, Zhou J, Fang HS, Wu ZB, Song BA, Yang S (2017) Synthesis and bioactivities of 1-ary-4-hydroxy-1H-pyrrol-2(5H)-one derivatives bearing 1,3,4-oxadiazole moiety. J Saudi Chem Soc 21:315–323. https://doi.org/10.1016/j.jscs.2016.10.002

    Article  CAS  Google Scholar 

  32. Zhou L, Wang PY, Zhou J, Shao WB, Fang HS, Wu ZB, Yang S (2017) Antimicrobial activities of pyridinium-tailored pyrazoles bearing 1,3,4-oxadiazole scaffolds. J Saudi Chem Soc 21:852–860. https://doi.org/10.1016/j.jscs.2017.04.005

    Article  CAS  Google Scholar 

  33. Wang X, Zhong X, Zhu X, Wang H, Li Q, Zhang J, Ruan X, Xue W (2017) Synthesis and antibacterial activity of oxime ester derivatives containing 1,2,4-triazole or 1,3,4-oxadiazole moiety. Chem Pap 71:1953–1960. https://doi.org/10.1007/s11696-017-0189-5

    Article  CAS  Google Scholar 

  34. Golbraikh A, Tropsha A (2002) Beware of \(\text{ q }^{2}\). J Mol Graph Model 20:269–276. https://doi.org/10.1016/s1093-3263(01)00123-1

    Article  CAS  PubMed  Google Scholar 

  35. Huang XY, Shan ZJ, Zhai HL, Li LN, Zhang XY (2011) Molecular design of anticancer drug leads based on three-dimensional quantitative structure-activity relationship. J Chem Inf Model 51:1999–2006. https://doi.org/10.1021/ci2002236

    Article  CAS  PubMed  Google Scholar 

  36. Amin EA, Welsh W (2006) Highly predictive CoMFA and CoMSIA models for two series of stromelysin-1 (MMP-3) inhibitors elucidate S1’ and S1–S2’ binding modes. J Chem Inf Model 46:1775–1783. https://doi.org/10.1021/ci060089d

    Article  CAS  PubMed  Google Scholar 

  37. Cruciani G, Baroni M, Clementi S, Costantino G, Riganelli D, Skagerberg B (1992) Predictive ability of regression models. Part I: standard deviation of prediction errors (SDEP). J Chemom 6:335–346. https://doi.org/10.1002/cem.1180060604

    Article  CAS  Google Scholar 

  38. Baroni M, Clementi S, Cruciani G, Costantino G, Riganelli D, Oberrauch E (1992) Predictive ability of regression models. Part II: selection of the best predictive PLS model. J Chemom 6:347–356. https://doi.org/10.1002/cem.1180060605

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge grants from the National Key Research and Development Program of China (No. 2017YFD0200506), the National Nature Science Foundation of China (No. 21462012) and the Special Fund for Outstanding Scientific and Technological Candidates of Guizhou Province (No. 2015035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobin Wang or Wei Xue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 3194 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yan, J., Wang, M. et al. Synthesis and three-dimensional quantitative structure-activity relationship study of quinazoline derivatives containing a 1,3,4-oxadiazole moiety as efficient inhibitors against Xanthomonas axonopodis pv. citri. Mol Divers 22, 791–802 (2018). https://doi.org/10.1007/s11030-018-9837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9837-0

Keywords

Navigation