Skip to main content

Advertisement

Log in

Consensus models for CDK5 inhibitors in silico and their application to inhibitor discovery

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinase 5 (CDK5) has emerged as a principal therapeutic target for Alzheimer’s disease. It is highly desirable to develop computational models that can predict the inhibitory effects of a compound towards CDK5 activity. In this study, two machine learning tools (naive Bayesian and recursive partitioning) were used to generate four single classifiers from a large dataset containing 462 CDK5 inhibitors and 1,500 non-inhibitors. Then, two types of consensus models [combined classifier-artificial neural networks (CC-ANNs) and consensus prediction] were applied to combine four single classifiers to obtain superior performance. The results showed that both consensus models outperformed four single classifiers, and (MCC \(=\) 0.806) was superior to consensus prediction (MCC \(=\) 0.711) for an external test set. To illustrate the practical applications of the CC-ANN model in virtual screening, an in-house dataset containing 29,170 compounds was screened, and 40 compounds were selected for further bioactivity assays. The assay results showed that 13 out of 40 compounds exerted CDK5/p35 inhibitory activities with IC\(_{50}\) values ranging from 9.23 to \(229.76 \;\upmu \hbox {M}\). Interestingly, three new scaffolds that had not been previously reported as CDK5 inhibitors were found in this study. These studies prove that our protocol is an effective approach to predict small-molecule CDK5 affinity and identify novel lead compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Melnikova I (2007) Therapies for Alzheimer’s disease. Nat Rev Drug Discov 6:341–342. doi:10.1038/nrd2314

    Article  CAS  PubMed  Google Scholar 

  2. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344. doi:10.1056/NEJMra0909142

    Article  CAS  PubMed  Google Scholar 

  3. Dudash K (2011) Alzheimer’s disease: new therapies and the role of biomarkers. Biotechnol Healthc 8:22–23

    PubMed Central  PubMed  Google Scholar 

  4. Dhavan R, Tsai LH (2001) A decade of cdk5. Nat Rev Mol Cell Biol 2:749–759. doi:10.1038/35096019

    Article  CAS  PubMed  Google Scholar 

  5. Cruz JC, Tsai LH (2004) Cdk5 deregulation in the pathogenesis of Alzheimer’s disease. Trends Mol Med 10:452–458. doi:10.1016/j.molmed.2004.07.001

    Article  CAS  PubMed  Google Scholar 

  6. Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16:460–465. doi:10.1111/j.1749-6632.1996.tb34410.x

    Article  CAS  PubMed  Google Scholar 

  7. Tolnay M, Probst A (1999) REVIEW: tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol 25:171–187. doi:10.1046/j.1365-2990.00182.x

    Article  CAS  PubMed  Google Scholar 

  8. Patrick GN, Zukerberg L, Nikolic M, Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402:615–622. doi:10.1038/45159

    Article  CAS  PubMed  Google Scholar 

  9. Lau LF, Patricia AS, Mark AS, Schachter JB (2002) Cdk5 as a drug target for the treatment of Alzheimer’s disease. J Mol Neurosci 19:267–270. doi:10.1385/JMN:19:3:267

    Article  CAS  PubMed  Google Scholar 

  10. Hosoi T, Uchiyama M, Okumura E, Saito T, Ishiguro K, Uchida T, Okuyama A, Kishimoto T, Hisanaga S (1995) Evidence for cdk5 as a major activity phosphorylating tau protein in porcine brain extract. J Biochem 117:741–749

    CAS  PubMed  Google Scholar 

  11. Cardone A, Hassan SA, Albers RW, Sriram RD, Pant HC (2010) Structural and dynamic determinants of ligand binding and regulation of cyclin-dependent kinase 5 by pathological activator p25 and inhibitory peptide CIP. J Mol Biol 401:478–492. doi:10.1016/j.jmb.2010.06.040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ahlijanian MK, Barrezueta NX, Williams RD, Jakowski A, Kowsz KP, McCarthy S, Coskran T, Carlo A, Seymour PA, Burkhardt JE, Nelson RB, McNeish JD (2000) Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci USA 97:2910–2915. doi:10.1073/pnas.040577797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH (2005) Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 48:825–838. doi:10.1016/j.neuron.2005.10.033

    Article  CAS  PubMed  Google Scholar 

  14. Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483. doi:10.1016/S0896-6273(03)00627-5

    Article  CAS  PubMed  Google Scholar 

  15. Chou KC, Watenpaugh KD, Heinrikson RL (1999) A model of the complex between cyclin-dependent kinase 5 (Cdk5) and the activation domain of neuronal Cdk5 activator. Biochem Biophys Res Commun 259:420–428. doi:10.1006/bbrc.1999.0792

    Article  CAS  PubMed  Google Scholar 

  16. Chou KC (2004) Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun 319:433–438. doi:10.1016/j.bbrc.2004.05.016

    Article  CAS  PubMed  Google Scholar 

  17. Chou KC (2004) Insights from modeling the tertiary structure of human BACE2. J Proteome Res 3:1069–1072. doi:10.1021/pr049905s

    Article  CAS  PubMed  Google Scholar 

  18. Chou KC (2005) Modeling the tertiary structure of human cathepsin-E. Biochem Biophys Res Commun 331:56–60. doi:10.1016/j.bbrc.2005.03.123

    Article  CAS  PubMed  Google Scholar 

  19. Chou KC, Howe WJ (2002) Prediction of the tertiary structure of the beta-secretase zymogen. Biochem Biophys Res Commun 292:702–708. doi:10.1006/bbrc.2002.6686

    Article  CAS  PubMed  Google Scholar 

  20. Chou KC (2004) Structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134. doi:10.2174/0929867043364667

    Article  CAS  PubMed  Google Scholar 

  21. Chou KC, Luan CH, Chou KC, Johnson GV (2002) Identification of the N-terminal functional domains of Cdk5 by molecular truncation and computer modeling. Proteins 48:447–453. doi:10.1002/prot.10173

    Article  PubMed  Google Scholar 

  22. Pielak RM, Schnell JR, Chou JJ (2009) Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci USA 106:7379–7384. doi:10.1073/pnas.0902548106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chou KC, Wei DQ, Zhong WZ (2003) Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Commun 308:148–151. doi:10.1016/S0006-291X(03)01342-1

    Article  CAS  PubMed  Google Scholar 

  24. Du QS, Huang RB, Chou KC (2008) Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr Protein Pept Sci 9:248–260. doi:10.2174/138920308784534005

    Article  CAS  PubMed  Google Scholar 

  25. Du QS, Huang RB, Wei YT, Du LQ, Chou KC (2008) Multiple field three dimensional quantitative structure–activity relationship (MF-3D-QSAR). J Comput Chem 29:211–219. doi:10.1002/jcc.20776

    Article  CAS  PubMed  Google Scholar 

  26. Du QS, Huang RB, Wei YT, Pang ZW, Du LQ, Chou KC (2009) Fragment-based quantitative structure–activity relationship (FB-QSAR) for fragment-based drug design. J Comput Chem 30:295–304. doi:10.1002/jcc.21056

    Article  CAS  PubMed  Google Scholar 

  27. Prado-Prado FJ, Martinez de la Vega O (2009) Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug–drug complex networks. Bioorg Med Chem 17:569–575. doi:10.1016/j.bmc.2008.11.075

    Article  CAS  PubMed  Google Scholar 

  28. Fang J, Huang D, Zhao W, Ge H, Luo HB, Xu J (2011) A new protocol for predicting novel GSK-3\(\beta \) ATP competitive inhibitors. J Chem Inf Model 51:1431–1438. doi: 10.1021/ci2001154

    Article  CAS  PubMed  Google Scholar 

  29. Fang J, Yang R, Gao L, Zhou D, Yang S, Liu AL, Du GH (2013) Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery. J Chem Inf Model 53:3009–3020. doi:10.1021/ci400331p

    Article  CAS  PubMed  Google Scholar 

  30. Singh N, Chaudhury S, Liu R, AbdulHameed MD, Tawa G, Wallqvist A (2012) QSAR classification model for antibacterial compounds and its use in virtual screening. J Chem Inf Model 52:2559–2569. doi:10.1021/ci300336v

    Article  CAS  PubMed  Google Scholar 

  31. Myint KZ, Wang L, Tong Q, Xie XQ (2012) Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions. Mol Pharm 9:2912–2923. doi:10.1021/mp300237z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fernandez M, Tundidor-Camba A, Caballero J (2005) Modeling of cyclin-dependent kinase inhibition by 1H-pyrazolo[3,4-d]pyrimidine derivatives using artificial neural network ensembles. J Chem Inf Model 45:1884–1895. doi:10.1021/ci050263i

  33. Li J, Liu H, Yao X, Liu M, Hu Z, Fan B (2007) Structure–activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines. Anal Chim Acta 581:333–342. doi:10.1016/j.aca.2006.08.031

    Article  CAS  PubMed  Google Scholar 

  34. Ducrot P, Legraverend M, Grierson DS (2000) 3D-QSAR CoMFA on cyclin-dependent kinase inhibitors. J Med Chem 43:4098–4108. doi:10.1021/jm000965t

    Article  CAS  PubMed  Google Scholar 

  35. Kunick C, Lauenroth K, Wieking K, Xie X, Schultz C, Gussio R, Zaharevitz D, Leost M, Meijer L, Weber A, Jorgensen FS, Lemcke T (2004) Evaluation and comparison of 3D-QSAR CoMSIA models for CDK1, CDK5, and GSK-3 inhibition by paullones. J Med Chem 47:22–36. doi:10.1021/jm0308904

    Article  CAS  PubMed  Google Scholar 

  36. Singh SK, Dessalew N, Bharatam PV (2006) 3D-QSAR CoMFA study on indenopyrazole derivatives as cyclin dependent kinase 4 (CDK4) and cyclin dependent kinase 2 (CDK2) inhibitors. Eur J Med Chem 41:1310–1319. doi:10.1016/j.ejmech.2006.06.010

    Article  CAS  PubMed  Google Scholar 

  37. Singh SK, Dessalew N, Bharatam PV (2007) 3D-QSAR CoMFA study on oxindole derivatives as cyclin dependent kinase 1 (CDK1) and cyclin dependent kinase 2 (CDK2) inhibitors. Med Chem 3:75–84. doi:10.2174/157340607779317517

    Article  CAS  PubMed  Google Scholar 

  38. Caballero J, Fernandez M, Gonzalez-Nilo FD (2008) Structural requirements of pyrido[2,3-d]pyrimidin-7-one as CDK4/D inhibitors: 2D autocorrelation, CoMFA and CoMSIA analyses. Bioorg Med Chem 16:6103–6115. doi:10.1016/j.bmc.2008.04.048

    Article  CAS  PubMed  Google Scholar 

  39. Babu PA, Smiles DJ, Narasu ML, Srinivas K (2008) Identification of novel CDK2 inhibitors by QSAR and virtual screening procedures. QSAR Comb Sci 27:1362–1373. doi:10.1002/qsar.200860041

    Article  CAS  Google Scholar 

  40. Dessalew N, Singh SK (2008) 3D-QSAR CoMFA and CoMSIA study on benzodipyrazoles as cyclin dependent kinase 2 inhibitors. Med Chem 4:313–321. doi:10.2174/157340608784872244

    Article  CAS  PubMed  Google Scholar 

  41. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35:D198–201. doi:10.1093/nar/gkl999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Chioua M, Samadi A, Soriano E, Lozach O, Meijer L, Marco-Contelles J (2009) Synthesis and biological evaluation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives as protein kinase inhibitors. Bioorg Med Chem Lett 19:4566–4569. doi:10.1016/j.bmcl.2009.06.099

    Article  CAS  PubMed  Google Scholar 

  43. Helal CJ, Kang Z, Lucas JC, Gant T, Ahlijanian MK, Schachter JB, Richter KE, Cook JM, Menniti FS, Kelly K, Mente S, Pandit J, Hosea N (2009) Potent and cellularly active 4-aminoimidazole inhibitors of cyclin-dependent kinase 5/p25 for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 19:5703–5707. doi:10.1016/j.bmcl.2009.08.019

    Article  CAS  PubMed  Google Scholar 

  44. Jain P, Flaherty PT, Yi S, Chopra I, Bleasdell G, Lipay J, Ferandin Y, Meijer L, Madura JD (2011) Design, synthesis, and testing of an 6-O-linked series of benzimidazole based inhibitors of CDK5/p25. Bioorg Med Chem 19:359–373. doi:10.1016/j.bmc.2010.11.022

    Article  CAS  PubMed  Google Scholar 

  45. Kassis P, Brzeszcz J, Beneteau V, Lozach O, Meijer L, Le Guevel R, Guillouzo C, Lewinski K, Bourg S, Colliandre L, Routier S, Merour JY (2011) Synthesis and biological evaluation of new 3-(6-hydroxyindol-2-yl)-5-(Phenyl) pyridine or pyrazine V-Shaped molecules as kinase inhibitors and cytotoxic agents. Eur J Med Chem 46:5416–5434. doi:10.1016/j.ejmech.2011.08.048

    Article  CAS  PubMed  Google Scholar 

  46. Laha JK, Zhang X, Qiao L, Liu M, Chatterjee S, Robinson S, Kosik KS, Cuny GD (2011) Structure–activity relationship study of 2,4-diaminothiazoles as Cdk5/p25 kinase inhibitors. Bioorg Med Chem Lett 21:2098–2101. doi:10.1016/j.bmcl.2011.01.140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Shiradkar M, Thomas J, Kanase V, Dighe R (2011) Studying synergism of methyl linked cyclohexyl thiophenes with triazole: synthesis and their cdk5/p25 inhibition activity. Eur J Med Chem 46:2066–2074. doi:10.1016/j.ejmech.2011.02.059

    Article  CAS  PubMed  Google Scholar 

  48. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594. doi:10.1021/jm300687e

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Chemical Computing Group Inc. (2010) Molecular Operating Environment (MOE), version 2010.10. Chemical Computing Group Inc., Montreal, Canada

  50. Accelrys Inc. (2012) Discovery Studio 3.1. Accelrys Inc., San Diego. http://www.accelrys.com

  51. Wang L, Wang M, Yan A, Dai B (2013) Using self-organizing map (SOM) and support vector machine (SVM) for classification of selectivity of ACAT inhibitors. Mol Divers 17:85–96. doi:10.1007/s11030-012-9404-z

    Article  CAS  PubMed  Google Scholar 

  52. MathWorks Inc. Matlab Version 7.5.0.342 (R2007b). MathWorks Inc., Natick

  53. Xia X, Maliski EG, Gallant P, Rogers D (2004) Classification of kinase inhibitors using a Bayesian model. J Med Chem 47:4463–4470. doi:10.1021/jm0303195

    Article  CAS  PubMed  Google Scholar 

  54. Lamanna C, Bellini M, Padova A, Westerberg G, Maccari L (2008) Straightforward recursive partitioning model for discarding insoluble compounds in the drug discovery process. J Med Chem 51:2891–2897. doi:10.1021/jm701407x

    Article  CAS  PubMed  Google Scholar 

  55. Cheng F, Yu Y, Shen J, Yang L, Li W, Liu G, Lee PW, Tang Y (2011) Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. J Chem Inf Model 51:996–1011. doi:10.1021/ci200028n

    CAS  PubMed  Google Scholar 

  56. Mansouri K, Ringsted T, Ballabio D, Todeschini R, Consonni V (2013) Quantitative structure–activity relationship models for ready biodegradability of chemicals. J Chem Inf Model 53:867–878. doi:10.1021/ci4000213

    Article  CAS  PubMed  Google Scholar 

  57. Andrea TA, Kalayeh H (1991) Applications of neural networks in quantitative structure–activity relationships of dihydrofolate reductase inhibitors. J Med Chem 34:2824–2836. doi:10.1021/jm00113a022

    Article  CAS  PubMed  Google Scholar 

  58. Huang YS, Liu K, Suen CY (1994) A neural network approach for multiclassifier recognition systems. In: Proceedings of the fourth international workshop on frontiers in handwriting recognition, Taiwan, Dec, pp 235–244

  59. Fan YN, Xiao X, Min JL, Chou KC (2014) iNR-Drug: predicting the interaction of drugs with nuclear receptors in cellular networking. Int J Mol Sci 15:4915–4937. doi:10.3390/ijms15034915

    Article  PubMed Central  PubMed  Google Scholar 

  60. Xu Y, Wen X, Wen LS, Wu LY, Deng NY, Chou KC (2014) iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 9:e105018. doi:10.1371/journal.pone.0105018

  61. Xiao X, Wu ZC, Chou KC (2014) iLoc-Virus: a multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J Theor Biol 284:42–51. doi:10.1016/j.jtbi.2011.06.005

    Article  Google Scholar 

  62. Chen L, Zeng WM, Cai YD, Feng KY, Chou KC (2012) Predicting Anatomical Therapeutic Chemical (ATC) classification of drugs by integrating chemical–chemical interactions and similarities. PLoS One 7:e35254. doi:10.1371/journal.pone.0035254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Chou KC (2013) Some remarks on predicting multi-label attributes in molecular biosystems. Mol Biosyst 9:1092–1100. doi:10.1039/c3mb25555g

    Article  CAS  PubMed  Google Scholar 

  64. Zatloukal M, Jorda R, Gucky T, Reznickova E, Voller J, Pospisil T, Malinkova V, Adamcova H, Krystof V, Strnad M (2013) Synthesis and in vitro biological evaluation of 2,6,9-trisubstituted purines targeting multiple cyclin-dependent kinases. Eur J Med Chem 61:61–72. doi:10.1016/j.ejmech.2012.06.036

    Article  CAS  PubMed  Google Scholar 

  65. Demange L, Abdellah FN, Lozach O, Ferandin Y, Gresh N, Meijer L, Galons H (2013) Potent inhibitors of CDK5 derived from roscovitine: synthesis, biological evaluation and molecular modelling. Bioorg Med Chem Lett 23:125–131. doi:10.1016/j.bmcl.2012.10.141

  66. Malmstrom J, Viklund J, Slivo C, Costa A, Maudet M, Sandelin C, Hiller G, Olsson LL, Aagaard A, Geschwindner S, Xue Y, Vasange M (2012) Synthesis and structure–activity relationship of 4-(1,3-benzothiazol-2-yl)-thiophene-2-sulfonamides as cyclin-dependent kinase 5 (cdk5)/p25 inhibitors. Bioorg Med Chem Lett 22:5919–5923. doi:10.1016/j.bmcl.2012.07.068

    Article  PubMed  Google Scholar 

  67. Demange L, Lozach O, Ferandin Y, Hoang NT, Meijer L, Galons H (2012) Synthesis and evaluation of new potent inhibitors of CK1 and CDK5, two kinases involved in Alzheimer’s disease. Med Chem Res 22:3247–3258. doi:10.1007/s00044-012-0334-1

    Article  Google Scholar 

  68. Baki A, Bielik A, Molnar L (2007) A high throughput luminescent assay for glycogen synthase kinase-3 inhibitors. Assay Drug Dev Technol 5:75–83. doi:10.1089/adt.2006.029

    Article  CAS  PubMed  Google Scholar 

  69. Ma S, Dai Y (2011) Principal component analysis based methods in bioinformatics studies. Brief Bioinform 12:714–722. doi:10.1093/bib/bbq090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Research Special Fund for Public Welfare Industry of Health (No. 200802041), the National Great Science and Technology Projects (2012ZX09301002, 2014ZX09507003-002), the International Collaboration Project (2011DFR31240), and Peking Union Medical College graduate student innovation fund (2013-1007-18)

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Lin Liu or Guan-Hua Du.

Additional information

Jiansong Fang and Ranyao Yang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 1578 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, J., Yang, R., Gao, L. et al. Consensus models for CDK5 inhibitors in silico and their application to inhibitor discovery. Mol Divers 19, 149–162 (2015). https://doi.org/10.1007/s11030-014-9561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9561-3

Keywords

Navigation