Skip to main content
Log in

Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A new application of lithium perchlorate-nitromethane (LPNM) for the formation of aromatic C–N and C–C bonds is introduced. LPNM-promoted reactions of anilines with diarylmethanols selectively generate N-alkylated anilines or mono and double Friedel–Crafts alkylation products under different conditions by changing the reaction time, reaction temperature, and the ratio of the reactants. This method does not require the use of transition metal catalysts to prepare alkylated aniline derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salvatore RN, Yoon CH, Jung KW (2001) Synthesis of secondary amines. Tetrahedron 57: 7785–7811. doi:10.1016/S0040-4020(01)00722-0

    Article  CAS  Google Scholar 

  2. Lawrence SA (2005) Amines: synthesis, properties and applications. Cambridge University Press, Cambridge

    Google Scholar 

  3. Patai, S (ed) (1968) The Chemistry of the amino group. Wiley, New York

    Google Scholar 

  4. Epstein AJ, MacDiarmid AG (1995) Polyanilines: from solitons to polymer-metal, from chemical curiosity to technology. Synth Met 69: 179–182. doi:10.1016/0379-6779(94)02410-Z

    Article  CAS  Google Scholar 

  5. Salvatore RN, Nagle AS, Jung KW (2002) Cesium effect: high chemoselectivity in direct N-alkylation of amines. J Org Chem 67: 674–683. doi:10.1021/jo026057g

    Article  PubMed  CAS  Google Scholar 

  6. Chiappe C, Pieraccini D (2003) Direct mono-N-alkylation of amines in ionic liquids: chemoselectivity and reactivity. Green Chem 5: 193–197. doi:10.1039/b211340f

    Article  CAS  Google Scholar 

  7. Zhang H, Cai Q, Ma DW (2005) Amino acid promoted CuI-catalyzed C–N bond formation between aryl halides and amines or N-containing heterocycles. J Org Chem 70: 5164–5173. doi:10.1021/jo0504464

    Article  PubMed  CAS  Google Scholar 

  8. Shafir A, Buchwald SL (2006) Highly selective room-temperature copper-catalyzed C–N coupling reactions. J Am Chem Soc 128: 8742–8743. doi:10.1021/ja063063b

    Article  PubMed  CAS  Google Scholar 

  9. Taillefer M, Xia N, Ouali A (2007) Efficient iron/copper co-catalyzed arylation of nitrogen nucleophiles. Angew Chem Int Ed 46: 934–936. doi:10.1002/anie.200603173

    Article  CAS  Google Scholar 

  10. Shen QL, Hartwig JF (2008) [(CyPF-Bu-t)PdCl2]: an air-stable, one-component, highly efficient catalyst for amination of heteroaryl and aryl halides. Org Lett 10: 4109–4112. doi:10.1021/ol801615u

    Article  PubMed  CAS  Google Scholar 

  11. Xu HH, Wolf C (2009) Copper catalyzed coupling of aryl chlorides, bromides and iodides with amines and amides. Chem Commun 13: 1715–1717. doi:10.1039/b823407h

    Article  Google Scholar 

  12. Bhattacharyya S (1995) Reductive alkylations of dimethylamine using titanium(iv) isopropoxide and sodium-borohydride—An efficient, safe, and convenient method for the synthesis of N, N-dimethylated tertiary-amines. J Org Chem 60: 4928–4929. doi:10.1021/jo00120a044

    Article  CAS  Google Scholar 

  13. Walsh PJ, Baranger AM, Bergman RG (1992) Stoichiometric and catalytic hydroamination of alkynes and allene by zirconium bisamides CP2Zr(NHR)2. J Am Chem Soc 114: 1708–1719. doi:10.1021/ja00031a026

    Article  CAS  Google Scholar 

  14. Muller TE, Beller M (1998) Metal-initiated amination of alkenes and alkynes. Chem Rev 98: 675–703. doi:10.1021/cr960433d

    Article  PubMed  Google Scholar 

  15. Ryu J-S, Li GY, Marks TJ (2003) Organolathanide-catalyzed regioselective intermolecular hydroamination of alkenes, alkynes, vinylarenes, di- and trivinylarenes, and methylenecyclopropanes. Scope and mechanistic comparison to intramolecular cyclohydroaminations. J Am Chem Soc 125: 12584–12605. doi:10.1021/ja035867m

    Article  PubMed  CAS  Google Scholar 

  16. Johns AM, Utsunomiya M, Incarvito CD, Hartwig JF (2006) A highly active palladium catalyst for intermolecular hydroamination. Factors that control reactivity and additions of functionalized anilines to dienes and vinylarenes. J Am Chem Soc 128: 1828–1839. doi:10.1021/ja056003z

    Article  PubMed  CAS  Google Scholar 

  17. Wolfe JP, Wagaw S, Marcoux J-F, Buchwald SL (1998) Rational development of practical catalysts for aromatic carbon–nitrogen bond formation. Acc Chem Res 31: 805–818. doi:10.1021/ar7002489

    Article  CAS  Google Scholar 

  18. Hartwig JF (1998) Carbon-heteroatom bond-forming reductive eliminations of amines, ethers, and sulfides. Acc Chem Res 31: 852–860. doi:10.1021/ar800098p

    Article  CAS  Google Scholar 

  19. Shekhar S, Ryberg P, Hartwig JF, Mathew JS, Blackmond DG, Strieter ER, Buchwald SL (2006) Reevaluation of the mechanism of the amination of aryl halides catalyzed by BINAP-ligated palladium complexes. J Am Chem Soc 12: 3584–3591. doi:10.1021/ja045533c

    Article  Google Scholar 

  20. Navarro O, Marion N, Mei J, Nolan SP (2006) Rapid room temperature Buchwald–Hartwig and Suzuki–Miyaura couplings of heteroaromatic compounds employing low catalyst loadings. Chem Eur J 12: 5142–5148. doi:10.1002/chin.200644148/pdf

    Article  CAS  Google Scholar 

  21. Watanabe Y, Tsuji Y, Ige H, Ohsugi Y, Ohta T (1984) Ruthenium-catalyzed N-alkylation and N-benzylation of aminoarenes with alcohols. J Org Chem 49: 3359–3363. doi:10.1021/jo00192a021

    Article  CAS  Google Scholar 

  22. Bitsi G, Schleiffer E, Antoni F, Jenner G (1989) N-Alkylation of amines via homogeneous catalysis—synthesis of cyclic monoamines and diamines. J Organomet Chem 373: 343–352. doi:10.1016/0022-328X(89)85062-4

    Article  CAS  Google Scholar 

  23. Zhu ZL, Espenson JH (1996) Organic reactions catalyzed by methylrhenium trioxide: dehydration, amination, and disproportionation of alcohols. J Org Chem 61: 324–328. doi:10.1021/jo951613a

    Article  CAS  Google Scholar 

  24. Fujita KI, Enoki Y, Yamaguchi R (2008) Cp*Ir-catalyzed N-alkylation of amines with alcohols. A versatile and atom economical method for the synthesis of amines. Tetrahedron 64: 1943–1954. doi:10.1016/j.tet.2007.11.083

    Article  CAS  Google Scholar 

  25. Blank B, Michlik S, Kempe R (2009) Selective iridium-catalyzed alkylation of (hetero) aromatic amines and diamines with alcohols under mild reaction conditions. Chem Eur J 15: 3790–3799. doi:10.1002/chin.200932146

    Article  CAS  Google Scholar 

  26. Motokura K, Nakagiri N, Mizugaki T, Ebitani K, Kaneda K (2007) Nucleophilic substitution reactions of alcohols with use of montmorillonite catalysts as solid Brønsted acids. J Org Chem 72: 6006–6015. doi:10.1021/jo070416w

    Article  PubMed  CAS  Google Scholar 

  27. Pan XQ, Zou JP, Huang ZH, Zhang W (2008) Ga(OTf)(III)-promoted condensation reactions for 1,5-benzodiazepines and 1,5-benzothiazepines. Tetrahedron Lett 49: 5302–5308. doi:10.1002/chin.200851164/pdf

    Article  CAS  Google Scholar 

  28. Cai JJ, Zou JP, Pan XQ, Zhang W (2008) Gallium(III) triflate-catalyzed synthesis of quinoxaline derivatives. Tetrahedron Lett 49: 7386–7390. doi:10.1016/j.tetlet.2008.10.058

    Article  CAS  Google Scholar 

  29. Jiang YJ, Cai JJ, Zou JP, Zhang W (2010) Gallium(III) triflate-catalyzed [4+2+1] cycloadditions for the synthesis of novel 3,4-disubstituted-1,5-benzodiazepines. Tetrahedron Lett 51: 471–474. doi:10.1016/j.tetlet.2009.11.049

    Article  CAS  Google Scholar 

  30. Mao H, Wang L, Zou J (2010) A novel way to form C–N bond in LPNM media. J Suzhou Univ (Nat Sci Ed) 26: 84–86

    Google Scholar 

  31. Sudha R, Sankararaman S (1999) Chemoselective aldol condensation in 5 mol dm−3 lithium perchlorate-nitromethane. A comparison with lithium perchlorate diethyl ether medium. J Chem Soc Perkin Trans 1: 383–386. doi:10.1039/a900095j

    Article  Google Scholar 

  32. Ayerbe M, Cossio FP (1995) 4M Lithium perchlorate-nitromethane: an efficient solvent in Diels–Alder reactions using nitroalkenes as dienophiles. Tetrahedron Lett 36: 4447–4450. doi:10.1016/0040-4039(95)00678-6

    Article  CAS  Google Scholar 

  33. Sankararaman S, Sudha R (1999) Highly selective 1,2- and 1,4-addition of silyl enol ethers to α, β-unsaturated carbonyl compounds in 5m lithium perchlorate-nitromethane medium. J Org Chem 64: 2155–2157. doi:10.1021/jo990408i

    Article  PubMed  CAS  Google Scholar 

  34. Sankararaman S, Nesakumar JE (2000) Highly selective synthetic transformations catalyzed by lithium perchlorate in organic media. Eur J Org Chem 2003–2011. doi:10.1002/1099-0690(200006)2000

  35. Iddles HA, Hartop WL Jr (1950) Rearrangement of N-diphenylmethyl-o-toluidine. J Am Chem Soc 72: 4589–4591. doi:10.1021/ja00328a049

    Article  CAS  Google Scholar 

  36. Moskalyk RE, Malicky JL (1975) Alkylation by secondary alcohols.III. Fusion of medicinal sulfanilamides with benzhydrol. J Pharm Sci 64: 292–294

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Ping Zou or Wei Zhang.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 1,790 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Mao, HF., Wang, L. et al. Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols. Mol Divers 15, 849–855 (2011). https://doi.org/10.1007/s11030-011-9316-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-011-9316-3

Keywords

Navigation