Skip to main content
Log in

Microwave-assisted derivatization procedures for gas chromatography/mass spectrometry analysis

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this review, published applications of microwave-assisted derivatization procedures for gas chromatography/mass spectrometry (GC/MS) are summarized. Among the broad range of analytical techniques available, GC/MS is still the method of choice for most high-throughput screening procedures in forensic/clinical toxicology, doping control and food and environmental analysis. Despite the many advantages of the GC/MS method, time-consuming derivatization steps are often required in order to obtain desirable chromatographic characteristics or to improve the stability and detectability of the target analytes. These derivatization processes typically require reaction times from 30 min up to several hours at elevated temperature. In contrast, microwave protocols have demonstrated to be able to reduce the time required for derivatization to a few minutes, and can thus very effectively shorten the overall analysis time, in particular when carried out in a high-throughput format. Herein, the literature in this field is summarized and recent experimental techniques for performing parallel GC/MS derivatization protocols are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kappe CO, Dallinger D (2009) Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature. Mol Divers 13: 71–193. doi:10.1007/s11030-009-9138-8

    Article  PubMed  CAS  Google Scholar 

  2. Gabriel C, Gabriel S, Grant EH et al (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27: 213–224. doi:10.1039/a827213z

    Article  CAS  Google Scholar 

  3. Kappe CO (2008) Microwave dielectric heating in synthetic organic chemistry. Chem Soc Rev 37: 1127–1139. doi:10.1039/b803001b

    Article  CAS  Google Scholar 

  4. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43: 6250–6284. doi:10.1002/anie.200400655

    Article  CAS  Google Scholar 

  5. Loupy, A (eds) (2006) Microwaves in organic synthesis. 2nd ed. Wiley-VCH, Weinheim

    Google Scholar 

  6. Kappe CO, Dallinger D, Murphree SS (2009) Practical microwave synthesis for organic chemists—strategies, instruments, and protocols. Wiley-VCH, Weinheim

    Google Scholar 

  7. Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  8. Kappe CO, Dallinger D (2006) The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov 5: 51–64. doi:10.1038/nrd1926

    Article  PubMed  CAS  Google Scholar 

  9. Hoogenboom R, Schubert US (2007) Microwave-assisted polymer synthesis: recent developments in a rapidly expanding field of research. Macromol Rapid Commun 28: 368–386. doi:10.1002/marc.200600749

    Article  CAS  Google Scholar 

  10. Jhung SH, Jin T, Hwang YK, Chang J (2007) Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation. Chem Eur J 13: 4410–4417. doi:10.1002/chem.200700098

    Article  CAS  Google Scholar 

  11. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11: 440–452. doi:10.1002/chem.200400417

    Article  CAS  Google Scholar 

  12. Lill JR, Ingle ES, Liu PS, Pham V, Sandoval WN (2007) Microwave-assisted proteomics. Mass Spectrom Rev 26: 657–671. doi:10.1002/mas.20140

    Article  PubMed  CAS  Google Scholar 

  13. Kingston, HM (eds) (1988) Introduction to microwave sample preparation: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  14. Dasgupta A, Banerjee P, Malik S (1992) Use of microwave irradiation for rapid transesterification of lipids and accelerated synthesis of fatty acyl pyrrolidides for analysis by gas chromtography–mass spectrometry: study of fatty acid profiles of olive oil, evening primrose oil, fish oils and phospholipids from mango pulp. Chem Phys Lipids 62: 281–291. doi:10.1016/0009-3084(92)90065-W

    Article  CAS  Google Scholar 

  15. Dasgupta A, Banerjee P (1993) Microwave induced rapid preparation of acetyl, trifluoroacetyl and tert-butyl dimethylsilyl derivatives of fatty alcohols and diacylglycerols for gas chromatography-mass spectrometric analysis. Chem Phys Lipids 65: 217–224. doi:10.1016/0009-3084(93)90019-Y

    Article  CAS  Google Scholar 

  16. Thompson WC, Dasgupta A (1994) Microwave-induced rapid preparation of fluoro- derivatives of amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine for GC-MS confirmation assay. Clin Chem 40: 1703–1706

    PubMed  CAS  Google Scholar 

  17. Dasgupta A, Thompson WC, Malik S (1994) Use of microwave irradiation for rapid synthesis of perfluorooctanoyl derivatives of fatty alcohols, a new derivative for gas chromatography-mass spectrometric and fast atom bombardment mass spectrometric study. J Chromatogr A 685: 279–285. doi:10.1016/0021-9673(94)00673-3

    Article  CAS  Google Scholar 

  18. Thompson WC, Dasgupta A (1995) Confirmation and quantitation of cocaine, benzoylecgonine, ecgonine methyl ester, and cocaethylene by gas chromatography/mass spectrometry: use of microwave irradiation for rapid preparation of trimethylsilyl and T-butyldimethylsilyl derivatives. Am J Clin Pathol 104: 187–192

    PubMed  CAS  Google Scholar 

  19. Dasgupta A, Gardner C (1995) Distinguishing ephedrine and pseudoephedrine from methamphetamine as 4-Carbethoxyhexafluorobutyryl or pentafluorobenzoyl derivatives and analysis by GC/CI-MS: Microwave-induced rapid derivatization. Clin Chem 41: 1365–1367

    CAS  Google Scholar 

  20. Dasgupta A, Macaulay R (1995) Microwave-induced rapid synthesis of 4-carbethoxyhexafluorobutyryl derivatives of fatty alcohols – a novel derivative for gas chromatography-chemical ionization mass spectrometric study. J Chromatogr A 695: 136–141. doi:10.1016/0021-9673(94)01214-Y

    Article  CAS  Google Scholar 

  21. Kraemer T, Weber A, Maurer HH (eds) (1997) Improvement of sample preparation for the STA: acceleration of acid hydrolysis and derivatization procedures by microwave irradiation. In: Pragst F (ed) Proceedings of the Xth GTFCh symposium in Mosbach. Helm-Verlag, Heppenheim, pp 200–204

  22. Maurer, HH, Pfleger, K, Weber, A (eds) (2007) Mass spectral and GC data of drugs, poisons, pesticides, pollutants and their metabolites 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  23. Chung LW, Liu GJ, Li ZG, Chang YZ, Lee MR (2008) Solvent-enhanced microwave-assisted derivatization following solid-phase extraction combined with gas chromatography–mass spectrometry for determination of amphetamines in urine. J Chromatogr B 874: 115–118. doi:10.1016/j.jchromb.2008.09.003

    Article  CAS  Google Scholar 

  24. Chung LW, Lin KL, Yang TCC, Lee MR (2009) Orthogonal array optimization of microwave-assisted derivatization for determination of trace amphetamine and methamphetamine using negative chemical ionization gas chromatography–mass spectrometry. J Chromatogr A 1216: 4083–4089. doi:10.1016/j.chroma.2009.03.020

    Article  PubMed  CAS  Google Scholar 

  25. Strassnig S, Gferer M, Lankmayr EP (2004) Microwave-assisted derivatization of 2,5-hexanedione in urine: evaluation using GC-MS and GC-ECD. J Chromatogr B 813: 151–158. doi:10.1016/j.jchromb.2004.09.025

    Article  CAS  Google Scholar 

  26. Ranz A, Eberl A, Maier E, Lankmayr E (2008) Microwave-assisted derivatization of acidic herbicides for gas chromatography–mass spectrometry. J Chromatogr A 1192: 282–288. doi:10.1016/j.chroma.2008.03.076

    Article  PubMed  CAS  Google Scholar 

  27. Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited—on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73: 36–47. doi:10.1021/jo7022697

    Article  PubMed  CAS  Google Scholar 

  28. Bacsa B, Horváti K, Bősze S, Andreae F, Kappe CO (2008) Solid-phase synthesis of difficult peptide sequences at elevated temperatures–a critical comparison of microwave and conventional heating technologies. J Org Chem 73: 7532–7542. doi:10.1021/jo8013897

    Article  PubMed  CAS  Google Scholar 

  29. Hosseini M, Stiasni N, Barbieri V, Kappe CO (2007) Microwave-assisted asymmetric organocatalysis. A probe for non-thermal microwave effects and the concept of simultaneous cooling. J Org Chem 72: 1417–1424. doi:10.1021/jo0624187

    Article  PubMed  CAS  Google Scholar 

  30. Perreux L, Loupy A (2006) Nonthermal effects of microwaves in organic synthesis. In: Loupy A (eds) Microwaves in organic synthesis. 2nd edn. Wiley-VCH, Weinheim, pp 134–218

    Chapter  Google Scholar 

  31. de La Hoz A, Díaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34: 164–178. doi:10.1039/b411438h

    Article  PubMed  CAS  Google Scholar 

  32. Perreux L, Loupy A (2001) A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 57: 9199–9223. doi:10.1016/S0040-4020(01)00905-X

    Article  CAS  Google Scholar 

  33. Damm M, Rechberger N, Kollroser M, Kappe CO (2009) An evaluation of microwave-assisted derivatization procedures using hyphenated mass spectrometric techniques. J Chromatogr A 1216: 5875–5881. doi:10.1016/j.chroma.2009.06.035

    Article  PubMed  CAS  Google Scholar 

  34. Damm M, Kappe CO (2009) Parallel microwave chemistry in silicon carbide reactor platforms: an in-depth investigation into heating characteristics. Mol Divers 13: 529–543. doi:10.1007/s11030-009-9167-3

    Article  PubMed  CAS  Google Scholar 

  35. Damm M, Rechberger N, Kollroser M, Kappe CO (2010) Microwave-assisted high-throughput derivatization techniques utilizing silicon carbide microtiter platforms. J Chromatogr A 1217: 167–170. doi:10.1016/j.chroma.2009.11.071

    Article  PubMed  CAS  Google Scholar 

  36. Damm M, Kappe CO (2009) High-throughput experimentation platform: parallel microwave chemistry in HPLC/GC vials. J Comb Chem 11: 460–468. doi:10.1021/cc900007w

    Article  PubMed  CAS  Google Scholar 

  37. Obermayer D, Gutmann B, Kappe CO (2009) Microwave chemistry in silicon carbide reaction vessels: separating thermal from nonthermal effects. Angew Chem Int Ed 48: 8321–8324. doi:10.1002/anie.200904185

    Article  CAS  Google Scholar 

  38. Maurer HH (2006) Hyphenated mass spectrometric techniques: indispensable tools in clinical and forensic toxicology and in doping control. J Mass Spectrom 41: 1399–1413. doi:10.1002/jms.1112

    Article  PubMed  CAS  Google Scholar 

  39. Segura J, Ventura R, Jurado C (1998) Derivatization procedures for gas chromatographic-mass spectrometric determination of xenobiotics in biological samples, with special attention to drugs of abuse and doping agents. J Chromatogr B 713: 61–90. doi:10.1016/S0378-4347(98)00089-9

    Article  CAS  Google Scholar 

  40. Deng C, Yin X, Zhang L, Zhang X (2005) Development of microwave-assisted derivatization followed by gas chromatography/mass spectrometry for fast determination of amino acids in neonatal blood samples. Rapid Commun Mass Spectrom 19: 2227–2234. doi:10.1002/rcm.2052

    Article  PubMed  CAS  Google Scholar 

  41. Deng C, Wang B, Liu L (2005) Fast diagnosis of neonatal phenylketonuria by gas chromatography–mass spectrometry following microwave-assisted silylation. Chromatographia 62: 617–621. doi:10.1365/s10337-005-0686-5

    Article  CAS  Google Scholar 

  42. Xue R, Zhang S, Deng C, Dong L, Liu T, Wang J, Wu H, Gu J, Shen X (2008) Simultaneous determination of blood glucose and isoleucine levels in rats after chronic alcohol exposure by microwave-assisted derivatization and isotope dilution gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 22: 245–252. doi:10.1002/rcm.3350

    Article  PubMed  CAS  Google Scholar 

  43. Ferreira AA, Ferraz V, Oliveira PM, Godinho A, Silveira D, Raslan DS (2008) Microwave-assisted derivatization and GC-MS analysis if amino acids from Ipomoea cairica aqueous extract. Chem Nat Compd 44: 679–681. doi:10.1007/s10600-008-9154-4

    Article  CAS  Google Scholar 

  44. Xiao J, Deng C, Yang Z, Song G, Hu Y (2007) GC-MS measurement of 13C-enrichment of lactic acid in sepsis plasma. Chromatographia 66: 703–707. doi:10.1365/s10337-007-0417-1

    Article  CAS  Google Scholar 

  45. Mallouchos A, Lagos G, Komaitis M (2007) A rapid microwave-assisted derivatization process for the determination of phenolic acids in brewer’s spent grains. Food Chem 102: 606–611. doi:10.1016/j.foodchem.2006.05.040

    Article  CAS  Google Scholar 

  46. Chu TY, Chang CH, Liao YC, Chen YC (2001) Microwave-accelerated derivatization processes for the determination of phenolic acids by gas chromatography–mass spectrometry. Talanta 54: 1163–1171. doi:10.1016/S0039-9140(01)00392-7

    Article  PubMed  CAS  Google Scholar 

  47. Zuo Y, Zhang K, Lin Y (2007) Microwave-accelerated derivatization for the simultaneous gas chromatographic-mass spectrometric analysis of natural and synthetic estrogenic steroids. J Chromatogr A 1148: 211–218. doi:10.1016/j.chroma.2007.03.037

    Article  PubMed  CAS  Google Scholar 

  48. Bowden JA, Colosi DM, Stutts WL, Mora-Montero DC, Garrett TJ, Yost RA (2009) Enhanced analysis of steroids by gas chromatography/mass spectrometry using microwave-accelerated derivatization. Anal Chem 81: 6725–6734. doi:10.1021/ac900663c

    Article  PubMed  CAS  Google Scholar 

  49. Bowden JA, Colosi DM, Mora-Montero DC, Garrett TJ, Yost RA (2009) Enhancement of chemical derivatization of steroids by gas chromatography/mass spectrometry (GC/MS). J Chromatogr B 877: 3237–3242. doi:10.1016/j.jchromb.2009.08.005

    Article  CAS  Google Scholar 

  50. Amendola L, Garribba F, Botre F (2003) Determination of endogenous and synthetic glucocorticoids in human urine by gas chromatography–mass spectrometry following microwave-assisted derivatization. Anal Chim Acta 489: 233–243. doi:10.1016/S0003-2670(03)00703-7

    Article  CAS  Google Scholar 

  51. Deng C, Ji J, Zhang L, Zhang X (2005) Diagnosis of congenital adrenal hyperplasia by rapid determination of 17α-hydroxyprogesterone in dried blood spots by gas chromatography/mass spectrometry following microwave-assisted silylation. Rapid Commun Mass Spectrom 19: 2974–2978. doi:10.1002/rcm.2163

    Article  PubMed  CAS  Google Scholar 

  52. Zhu X, Meng Z, Chen Z, Liu L (2009) Simultaneous determination of resibufogenin and cinobufagin in chinese medicine ch ′an su by GC-MS following microwave-assisted silylation. Chromatographia 69: 749–754. doi:10.1365/s10337-009-0973-7

    Article  CAS  Google Scholar 

  53. Sha Y, Deng C, Zhang H, Xie W, Liu B (2008) Microwave-assisted silylation followed by gas chromatography/mass spectrometry for rapid determination of ergosterol in cigarettes. J Sep Sci 31: 2451–2456. doi:10.1002/jssc.200800108

    Article  PubMed  CAS  Google Scholar 

  54. Sha Y, Deng C, Liu B (2008) Development of C18-functionalized magnetic silica nanoparticles as sample preparation technique for the determination of ergosterol in cigarettes by microwave-assisted derivatization and gas chromatography/mass spectrometry. J Chromatogr A 1198(1199): 27–33. doi:10.1016/j.chroma.2008.05.049

    Article  PubMed  CAS  Google Scholar 

  55. Bowden JA, Colosi DM, Mora-Montero DC, Garrett TJ, Yost RA (2009) Evaluation of derivatization strategies for the comprehensive analysis of endocrine disrupting compounds using GC/MS. J Chromatogr Sci 47: 44–51

    PubMed  CAS  Google Scholar 

  56. Staack RF, Fritschi G, Maurer HH (2003) New designer drug 1-(3-trifluoromethylphenyl)piperazine (TFMPP): gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry studies on its phase I and II metabolism and on its toxicological detection in rat urine. J Mass Spectrom 38: 971–981. doi:10.1002/jms.513

    Article  PubMed  CAS  Google Scholar 

  57. Strano-Rossi S, Colamonici C, Botre F (2007) Detection of sibutramine administration: a gas chromatography/mass spectrometry study on the main urinary metabolites. Rapid Commun Mass Spectrom 21: 79–88. doi:10.1002/rcm.2807

    Article  PubMed  CAS  Google Scholar 

  58. Sauer C, Peters FT, Haas C, Meyer MR, Fritschi G, Maurer HH (2009) New designer drug α-pyrrolidinovalerophenone (PVP): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 44: 953–964. doi:10.1002/jms.1571

    Article  CAS  Google Scholar 

  59. Peters FT, Maurer HH, Hellstern P (2003) Prevalence of illicit drug use in plasmapheresis donors. Vox Sang 84: 91–95. doi:10.1046/j.1423-0410.2003.00264.x

    Article  PubMed  CAS  Google Scholar 

  60. Meng P, Zhu D, He H, Wang Y, Guo F, Zhang L (2009) Determination of amphetamines in hair by GC/MS after small-volume liquid extraction and microwave derivatization. Anal Sci 25: 1115–1118. doi:10.2116/analsci.25.1115

    Article  PubMed  CAS  Google Scholar 

  61. Ewald AH, Peters FT, Weise M, Maurer HH (2005) Studies on the metabolism and toxicological detection of the designer drug 4-methylthioamphetamine (4-MTA) in human urine using gas chromatography–mass spectrometry. J Chromatogr B 824: 123–131. doi:10.1016/j.jchromb.2005.07.007

    Article  CAS  Google Scholar 

  62. Ewald AH, Fritschi G, Bork WR, Maurer HH (2006) Designer drugs 2,5-dimethoxy-4-bromo-amphetamine (DOB) and 2,5-dimethoxy-4-bromo-methamphetamine (MDOB): studies on their metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 41: 487–498. doi:10.1002/jms.1007

    Article  PubMed  CAS  Google Scholar 

  63. Ewald AH, Fritschi G, Maurer HH (2007) Metabolism and toxicological detection of the designer drug 4-iodo-2,5-dimethoxy-amphetamine (DOI) in rat urine using gas chromatography–mass spectrometry. J Chromatogr B 857: 170–174. doi:10.1016/j.jchromb.2007.06.027

    Article  CAS  Google Scholar 

  64. Theobald DS, Fehn S, Maurer HH (2005) New designer drug, 2,5-dimethoxy-4-propylthio-β-phenethylamine (2C-T-7): studies on its metabolism and its toxicological detection in rat urine using gas chromatography/mass spectrometry. J Mass Spectrom 40: 105–116. doi:10.1002/jms.784

    Article  PubMed  CAS  Google Scholar 

  65. Theobald DS, Staack RF, Puetz M, Maurer HH (2005) New designer drug 2,5-dimethoxy-4-ethylthio-β-phenethylamine (2C-T-2): studies on its metabolism and toxicological detection in rat urine using gas chromatography/mass spectrometry. J Mass Spectrom 40: 1157–1172. doi:10.1002/jms.890

    Article  PubMed  CAS  Google Scholar 

  66. Theobald DS, Pütz M, Schneider E, Maurer HH (2006) New designer drug 4-iodo-2,5-dimethoxy-β-phenethylamine (2C-I): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric and capillary electrophoretic/mass spectrometric techniques. J Mass Spectrom 41: 872–886. doi:10.1002/jms.1045

    Article  PubMed  CAS  Google Scholar 

  67. Theobald DS, Maurer HH (2006) Studies on the metabolism and toxicological detection on the designer drug 2,5- dimethoxy-4-methyl-β-phenethylamine (2C-D) in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 41: 1509–1519. doi:10.1002/jms.1128

    Article  PubMed  CAS  Google Scholar 

  68. Theobald DS, Maurer HH (2006) Studies on the metabolism and toxicological detection of the new designer drug 4-ethyl-2,5-dimethoxy-β-phenethylamine (2C-E) in rat urine using gas chromatographic-mass spectrometric techniques. J Chromatogr B 842: 76–90. doi:10.1016/j.jchromb.2006.03.001

    Article  CAS  Google Scholar 

  69. Theobald DS, Fritschi G, Maurer HH (2007) Studies on the toxicological detection of the designer drug 4-bromo-2,5-dimethoxy-β-phenethylamine (2C-B) in rat urine using gas chromatography–mass spectrometry. J Chromatogr B 846: 374–377. doi:10.1016/j.jchromb.2006.08.049

    Article  CAS  Google Scholar 

  70. Habrdova V, Peters FT, Theobald DS, Maurer HH (2005) Screening for and validated quantification of phenethylamine-type designer drugs and mescaline in human blood plasma by gas chromatography/mass spectrometry. J Mass Spectrom 40: 785–795. doi:10.1002/jms.853

    Article  PubMed  CAS  Google Scholar 

  71. Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2008) New designer drugs N-(1-phenylcyclohexyl)-2-ethoxyethanamine (PCEEA) and N-(1-phenylcyclohexyl)-2-methoxyethanamine (PCMEA): studies on their metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 43: 305–316. doi:10.1002/jms.1312

    Article  PubMed  CAS  Google Scholar 

  72. Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2008) Metabolism and toxicological detection of a new designer drug, N-(1-phenylcyclohexyl)propanamine, in rat urine using gas chromatography–mass spectrometry. J Chromatogr A 1186: 380–390. doi:10.1016/j.chroma.2007.11.002

    Article  PubMed  CAS  Google Scholar 

  73. Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2006) New designer drug N-(1-phenylcyclohexyl)-3-ethoxypropanamine (PCEPA): studies on its metabolism and toxicological detection in rat urine using gas chromatographic/mass spectrometric techniques. J Mass Spectrom 41: 1014–1029. doi:10.1002/jms.1058

    Article  PubMed  CAS  Google Scholar 

  74. Sauer C, Peters FT, Staack RF, Fritschi G, Maurer HH (2008) Metabolism and toxicological detection of the designer drug N-(1-phenylcyclohexyl)-3-methoxypropanamine (PCMPA) in rat urine using gas chromatography–mass spectrometry. Forensic Sci Int 181: 47–51. doi:10.1016/j.forsciint.2008.09.001

    Article  PubMed  CAS  Google Scholar 

  75. Staack RF, Maurer HH (2004) New designer drug 1-(3,4-methylenedioxybenzyl)piperazine (MDBP): studies on its metabolism and toxicological detection in rat urine using gas chromatography/mass spectrometry. J Mass Spectrom 39: 255–261. doi:10.1002/jms.556

    Article  PubMed  CAS  Google Scholar 

  76. Min S, Ping X, Baohua S (1999) Detection of meperidine and its metabolites in the hair of meperidine addicts. Forensic Sci Int 103: 159–171. doi:10.1016/S0379-0738(99)00082-1

    Article  Google Scholar 

  77. Ranz A, Maier E, Motter H, Lankmayr E (2008) Extraction and derivatization of polar herbicides for GC-MS analyses. J Sep Sci 31: 3021–3029. doi:10.1002/jssc.200800290

    Article  PubMed  CAS  Google Scholar 

  78. Zhang Z, Xiong G, Lie G, He X (2000) Sample pretreatment with microwave-assisted techniques. Anal Sci 16: 221–224. doi:10.2116/analsci.16.221

    Article  CAS  Google Scholar 

  79. Itonori S, Takahashi M, Kitamura T, Aoki K, Dulaney JT, Sugita M (2004) Microwave-mediated analysis of sugar, fatty acid, and sphingoid compositions of glycosphingolipids. J Lipid Res 45: 574–581. doi:10.1194/jlr.D300030-JLR200

    Article  PubMed  CAS  Google Scholar 

  80. Tomas A, Tor M, Villorbina G, Canela R, Balcells M, Eras J (2009) A rapid and reliable direct method for quantifying meat acylglycerids with monomode microwave irradiation. J Chromatogr A 1216: 3290–3295. doi:10.1016/j.chroma.2009.01.055

    Article  PubMed  CAS  Google Scholar 

  81. Amendola L, Colamonici C, Mazzarino M, Botre F (2003) Rapid determination of diuretics in human urine by gas chromatography–mass spectrometry following microwave assisted derivatization. Anal Chim Acta 475: 125–136. doi:10.1016/S0003-2670(02)01223-0

    Article  CAS  Google Scholar 

  82. Zhao H, Wang L, Qiu Y, Zhou Z, Zhong W, Li X (2007) Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography–tandem mass spectrometry (GC/MS/MS) following microwave-assisted derivatization. Anal Chim Acta 586: 399–406. doi:10.1016/j.aca.2006.12.003

    Article  PubMed  CAS  Google Scholar 

  83. Strassnig S, Wenzl T, Lankmayr EP (2000) Microwave-assisted derivatization of volatile carbonyl compounds with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine. J Chromatogr A 891: 267–273. doi:10.1016/S0021-9673(00)00642-7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Oliver Kappe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söderholm, S.L., Damm, M. & Kappe, C.O. Microwave-assisted derivatization procedures for gas chromatography/mass spectrometry analysis. Mol Divers 14, 869–888 (2010). https://doi.org/10.1007/s11030-010-9242-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9242-9

Keywords

Navigation