Skip to main content
Log in

Fragment-based QSAR: perspectives in drug design

  • Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Drug design is a process driven by innovation and technological breakthroughs involving a combination of advanced experimental and computational methods. A broad variety of medicinal chemistry approaches can be used for the identification of hits, generation of leads, as well as to accelerate the optimization of leads into drug candidates. Quantitative structure–activity relationship (QSAR) methods are among the most important strategies that can be applied for the successful design of small molecule modulators having clinical utility. Hologram QSAR (HQSAR) is a modern 2D fragment-based QSAR method that employs specialized molecular fingerprints. HQSAR can be applied to large data sets of compounds, as well as traditional-size sets, being a versatile tool in drug design. The HQSAR approach has evolved from a classical use in the generation of standard QSAR models for data correlation and prediction into advanced drug design tools for virtual screening and pharmacokinetic property prediction. This paper provides a brief perspective on the evolution and current status of HQSAR, highlighting present challenges and new opportunities in drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bleicher KH, Böhm HJ, Müller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2: 369–378

    Article  PubMed  CAS  Google Scholar 

  2. Zhao H (2007) Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective. Drug Discov Today 12: 149–155

    Article  PubMed  CAS  Google Scholar 

  3. Lombardino JG, Lowe JA (2004) The role of the medicinal chemist in drug discovery—then and now. Nat Rev Drug Discov 3: 853–862

    Article  PubMed  CAS  Google Scholar 

  4. Gershell LJ, Atkins JH (2003) A brief history of novel drug discovery technologies. Nat Rev Drug Discov 2: 321–327

    Article  PubMed  CAS  Google Scholar 

  5. Coates WJ, Hunter DJ, MacLachlan WS (2000) Successful implementation of automation in medicinal chemistry. Drug Discov Today 5: 521–527

    Article  PubMed  CAS  Google Scholar 

  6. Rester U (2008) From virtuality to reality—virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Dev 11: 559–568

    CAS  Google Scholar 

  7. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22: 151–185

    Article  PubMed  Google Scholar 

  8. Smith A (2002) Screening for drug discovery: the leading question. Nature 418: 453–459

    PubMed  Google Scholar 

  9. Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1: 882–894

    Article  PubMed  CAS  Google Scholar 

  10. Dobson CM (2004) Chemical space and biology. Nature 432: 824–828

    Article  PubMed  CAS  Google Scholar 

  11. Kubinyi H (2003) Drug research: myths, hype and reality. Nat Rev Drug Discov 2: 665–668

    Article  PubMed  CAS  Google Scholar 

  12. Good AC, Krystek SR, Mason JS (2000) High-throughput and virtual screening: core lead discovery technologies move towards integration. Drug Discov Today 5: 61–69

    Article  PubMed  Google Scholar 

  13. Erhardt PW (2002) Medicinal chemistry in the new millennium. A glance into the future. Pure Appl Chem 74: 703–785

    Article  CAS  Google Scholar 

  14. Oprea TI, Davis AM, Teague SJ, Leeson PD (2001) Is there a difference between leads and drugs? A historical perspective. J Chem Inf Comput Sci 41: 1308–1315

    PubMed  CAS  Google Scholar 

  15. Peltason L, Bajorath J (2007) Molecular similarity analysis uncovers heterogeneous structure–activity relationships and variable activity landscapes. Chem Biol 14: 489–497

    Article  PubMed  CAS  Google Scholar 

  16. Cramer RD III, Patterson D, Bunce J (1998) Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110: 5959–5967

    Article  Google Scholar 

  17. Klebe G, Abraham U (1993) On the prediction of binding properties of drug molecules by comparative molecular field analysis. J Med Chem 36: 70–80

    Article  PubMed  CAS  Google Scholar 

  18. Hansch C, Kurup A, Garg R, Gao H (2001) Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem Rev 101: 619–672

    Article  PubMed  CAS  Google Scholar 

  19. Hillebrecht A, Klebe G (2008) Use of 3D QSAR models for database screening: a feasibility study. J Chem Inf Model 48: 384–396

    Article  PubMed  CAS  Google Scholar 

  20. Castilho MS, Postigo MP, de Paula CB, Montanari CA, Oliva G, Andricopulo AD (2006) Two- and three-dimensional quantitative structure–activity relationships for a series of purine nucleoside phosphorylase inhibitors. Bioorg Med Chem 14: 516–527

    Article  PubMed  CAS  Google Scholar 

  21. Salum LB, Polikarpov I, Andricopulo AD (2007) Structural and chemical basis for enhanced affinity and potency for a series of estrogen receptor ligands: 2D and 3D QSAR studies. J Mol Graph Model 25: 434–442

    Article  Google Scholar 

  22. Guido RVC, Oliva G, Montanari CA, Andricopulo AD (2008) Structural basis for selective inhibition of trypanosomatid glyceraldehyde–3-phosphate dehydrogenase: molecular docking and 3D QSAR studies. J Chem Inf Model 48: 918–929

    Article  PubMed  CAS  Google Scholar 

  23. Honório KM, Garratt RC, Polikarpov I, Andricopulo AD (2007) 3D QSAR comparative molecular field analysis on nonsteroidal farnesoid X receptor activators. J Mol Graph Model 25: 921– 927

    Article  PubMed  Google Scholar 

  24. Andrade CH, Salum LB, Pasqualoto KFM, Ferreira EI, Andricopulo AD (2008) Three-dimensional quantitative structure–activity relationships for a large series of potent antitubercular agents. Lett Drug Des Discov 5: 377–387

    Article  CAS  Google Scholar 

  25. HQSARTM (2007) Manual release in SYBYL 7.3. Tripos Inc., St. Louis, MO

  26. Tong W, Lowis DR, Perkins R, Chen Y, Welsh WJ, Goddette DW, Heritage TW, Sheehan DM (1998) Evaluation of quantitative structure–activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor. J Chem Inf Comput Sci 38: 669–677

    PubMed  CAS  Google Scholar 

  27. Waller CL (2004) A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds. J Chem Inf Comput Sci 44: 758–765

    PubMed  CAS  Google Scholar 

  28. So SS, Karplus M (1999) A comparative study of ligand–receptor complex binding affinity prediction methods based on glycogen phosphorylase inhibitors. J Comput Aided Mol Des 13: 243–258

    Article  PubMed  CAS  Google Scholar 

  29. Park Choo HY, Lim JS, Kam Y, Kim SY, Lee J (2001) A comparative study of quantitative structure–activity relationship methods based on antitumor diarylsulfonylureas. Eur J Med Chem 36: 829–836

    Article  PubMed  CAS  Google Scholar 

  30. Liu H, Ji M, Luo X, Shen J, Huang X, Hua W, Jiang H, Chen K (2002) New p-methylsulfonamido phenylethylamine analogues as class III antiarrhythmic agents: design, synthesis, biological assay, and 3D-QSAR analysis. J Med Chem 45: 2953–2969

    Article  PubMed  CAS  Google Scholar 

  31. Pungpo P, Hannongbua S, Wolschann P (2003) Hologram quantitative structure–activity relationships investigations of non-nucleoside reverse transcriptase inhibitors. Curr Med Chem 10: 1661–1677

    Article  PubMed  CAS  Google Scholar 

  32. Doddareddy MR, Lee YJ, Cho YS, Choi KI, Koh HY, Pae AN (2004) Hologram quantitative structure activity relationship studies on 5-HT6 antagonists. Bioorg Med Chem 12: 3815–3824

    Article  PubMed  CAS  Google Scholar 

  33. Cunningham SL, Cunningham AR, Day BW (2005) CoMFA, HQSAR and molecular docking studies of butitaxel analogues with beta-tubulin. J Mol Model 11: 48–54

    Article  PubMed  CAS  Google Scholar 

  34. Honorio KM, Garratt RC, Andricopulo AD (2005) Hologram quantitative structure–activity relationships for a series of farnesoid X receptor activators. Bioorg Med Chem Lett 15: 3119–3125

    Article  PubMed  CAS  Google Scholar 

  35. Salum LB, Polikarpov I, Andricopulo AD (2007) Quantitative structure–activity relationships for a series of selective estrogen receptor-beta modulators. SAR QSAR Environ Res 18: 711–727

    Article  PubMed  CAS  Google Scholar 

  36. Castilho MS, Guido RVC, Andricopulo AD (2007) 2D Quantitative structure–activity relationship studies on a series of cholesteryl ester transfer protein inhibitors. Bioorg Med Chem 15: 6242–6252

    Article  PubMed  CAS  Google Scholar 

  37. Weber KC, Honório KM, Andricopulo AD, Da Silva AB (2008) Two-dimensional QSAR studies on arylpiperazines as high-affinity 5-HT(1A) receptor ligands. Med Chem 4: 328–335

    Article  PubMed  CAS  Google Scholar 

  38. Borchhardt DM, Castilho MS, Andricopulo AD (2008) Classical and fragment-based hologram structure–activity relationships for a series of analgesic cyclic imides. Lett Drug Des Discov 5: 57–64

    Article  CAS  Google Scholar 

  39. Andrade CH, Salum Lde B, Castilho MS, Pasqualoto KF, Ferreira EI, Andricopulo AD (2008) Fragment-based and classical quantitative structure–activity relationships for a series of hydrazides as antituberculosis agents. Mol Divers 2: 47–59

    Article  Google Scholar 

  40. Valadares NF, Castilho MS, Polikarpov I, Garratt RC (2007) 2D QSAR studies on thyroid hormone receptor ligands. Bioorg Med Chem 15: 4609–4617

    Article  PubMed  CAS  Google Scholar 

  41. Castilho MS, Guido RVC, Andricopulo AD (2007) Classical and hologram QSAR studies on a series of tacrine derivatives as butyrylcholinesterase inhibitors. Lett Drug Des Discov 4: 106–113

    Article  CAS  Google Scholar 

  42. Avery MA, Alvim-Gaston M, Rodrigues CR, Barreiro EJ, Cohen FE, Sabnis YA, Woolfrey JR (2002) Structure–activity relationships of the antimalarial agent artemisinin. 6. The development of predictive in vitro potency models using CoMFA and HQSAR methodologies. J Med Chem 45: 292–303

    Article  PubMed  CAS  Google Scholar 

  43. Cha MY, Lee IY, Cha JH, Choi KI, Cho YS, Koh HY, Pae AN (2003) QSAR studies on piperazinylalkylisoxazole analogues selectively acting on dopamine D3 receptor by HQSAR and CoMFA. Bioorg Med Chem 11: 1293–1298

    Article  PubMed  CAS  Google Scholar 

  44. Huang H, Ou W, Zhao J, Chen D, Wang L (2004) A comparative study of quantitative structure–activity relationship methods based on gallic acid derivatives. SAR QSAR Environ Res 15: 83–99

    Article  PubMed  CAS  Google Scholar 

  45. Guido RVC, Oliva G, Andricopulo AD (2008) Virtual screening and its integration with modern drug design technologies. Curr Med Chem 15: 37–46

    Article  PubMed  CAS  Google Scholar 

  46. Salum LB, Dias LC, Andricopulo AD (2008) Fragment-based QSAR and molecular modeling studies on a series of discodermolide analogs as microtubule-stabilizing anticancer agents. QSAR Comb Sci 27. doi:10.1002/qsar.200960109

  47. Tropsha A, Golbraikh A (2007) Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 13: 3494–3504

    Article  PubMed  CAS  Google Scholar 

  48. Kaiser D, Smiesko M, Kopp S, Chiba P, Ecker GF (2005) Interaction field based and hologram based QSAR analysis of propafenone-type modulators of multidrug resistance. Med Chem 1: 431–444

    Article  PubMed  CAS  Google Scholar 

  49. Prakash O, Ghosh I (2006) Developing an antituberculosis compounds database and data mining in the search of a motif responsible for the activity of a diverse class of antituberculosis agents. J Chem Inf Model 46: 17–23

    Article  PubMed  CAS  Google Scholar 

  50. Lo Piparo E, Koehler K, Chana A, Benfenati E (2006) Virtual screening for aryl hydrocarbon receptor binding prediction. J Med Chem 49: 5702–5709

    Article  PubMed  CAS  Google Scholar 

  51. Mahboobi S, Pongratz H, Hufsky H, Hockemeyer J, Frieser M, Lyssenko A, Paper DH, Bürgermeister J, Böhmer FD, Fiebig HH, Burger AM, Baasner S, Beckers T (2001) Synthetic 2-aroylindole derivatives as a new class of potent tubulin-inhibitory, antimitotic agents. J Med Chem 44: 4535–4553

    Article  PubMed  CAS  Google Scholar 

  52. La Regina G, Edler MC, Brancale A, Kandil S, Coluccia A, Piscitelli F, Hamel E, De Martino G, Matesanz R, Díaz JF, Scovassi AI, Prosperi E, Lavecchia A, Novellino E, Artico M, Silvestri R (2007) Arylthioindole inhibitors of tubulin polymerization. 3. Biological evaluation, structure–activity relationships and molecular modeling studies. J Med Chem 50: 2865–2874

    Article  PubMed  CAS  Google Scholar 

  53. Kaufmann D, Pojarová M, Vogel S, Liebl R, Gastpar R, Gross D, Nishino T, Pfaller T, von Angerer E (2007) Antimitotic activities of 2-phenylindole-3-carbaldehydes in human breast cancer cells. Bioorg Med Chem 15: 5122–5136

    Article  PubMed  CAS  Google Scholar 

  54. Chang JY, Hsieh HP, Chang CY, Hsu KS, Chiang YF, Chen CM, Kuo CC, Liou JP (2006) 7-Aroyl-aminoindoline-1-sulfonamides as a novel class of potent antitubulin agents. J Med Chem 49: 6656–6659

    Article  PubMed  CAS  Google Scholar 

  55. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise. Nat Rev Drug Discov 2: 192–204

    Article  PubMed  Google Scholar 

  56. Lombardo F, Gifford E, Shalaeva MY (2003) In silico ADME prediction: data, models, facts and myths. Mini Rev Med Chem 3: 861–875

    Article  PubMed  CAS  Google Scholar 

  57. Moda TL, Montanari CA, Andricopulo AD (2007) Hologram QSAR model for the prediction of human oral bioavailability. Bioorg Med Chem 15: 7738–7745

    Article  PubMed  CAS  Google Scholar 

  58. Moda TL, Montanari CA, Andricopulo AD (2007) In Silico prediction of human plasma protein binding using hologram QSAR. Lett Drug Des Discov 4: 502–509

    Article  CAS  Google Scholar 

  59. Moda TL, Torres LG, Carrara AE, Andricopulo AD (2008) PK/DB: database for pharmacokinetic properties and predictive in silico ADME models. Bioinformatics 24: 2270–2271

    Article  PubMed  CAS  Google Scholar 

  60. Andricopulo AD, Montanari CA (2005) Structure–activity relationships for the design of small-molecule inhibitors. Mini-Rev Med Chem 5: 585–593

    Article  PubMed  CAS  Google Scholar 

  61. Salum LB, Polikarpov I, Andricopulo AD (2008) Structure-based approach for the study of estrogen receptor binding affinity and subtype selectivity. J Chem Inf Model 48: 2243–2253

    Article  PubMed  CAS  Google Scholar 

  62. Guido RVC, Trossini GHG, Castilho MS, Oliva G, Ferreira EI, Andricopulo AD (2008) Structure–activity relationships for a class of selective inhibitors of the major cysteine protease from Trypanosoma cruzi. J Enzym Inhib Med Chem 23: 964–973

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano D. Andricopulo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salum, L.B., Andricopulo, A.D. Fragment-based QSAR: perspectives in drug design. Mol Divers 13, 277–285 (2009). https://doi.org/10.1007/s11030-009-9112-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9112-5

Keywords

Navigation