Skip to main content
Log in

Exploring structure–selectivity relationships of biogenic amine GPCR antagonists using similarity searching and dynamic compound mapping

  • Full Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

We design and analyze compound selectivity sets of antagonists with differential selectivity against seven biogenic amine G-protein coupled receptors. The selectivity sets consist of a total of 267 antagonists and contain a spectrum of in part closely related molecular scaffolds. Each set represents a different selectivity profile. Using these com- pound sets, a systematic computational analysis of structure–selectivity relationships is carried out with different 2D similarity methods including fingerprints, recursive partitioning, clustering, and dynamic compound mapping. Screening calculations are performed in a background database containing nearly four million molecules. Fingerprint searching and compound mapping are found to enrich target-selective antagonists over family-selective ones. Dynamic compound mapping effectively discriminates database compounds from GPCR antagonists and consistently retains target-selective antagonists during the final dimension extension levels. Furthermore, the widely used MACCS key fingerprint displays a strong tendency to distinguish between target- and family-selective GPCR antagonists. Taken together, the results indicate that different types of 2D similarity methods are capable of distinguishing closely related molecules having different selectivity. The reported compound benchmark system is made freely available in order to enable selectivity-oriented analyses using other computational approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5HT1a/2a:

5-hydroxytryptamine (serotonin) receptors 1a/2a

Alpha1:

Adrenaline receptor alpha1

D1-4:

Dopamine receptors 1-4

DEL:

Dimension extension level

Descr:

Descriptors

DynaMAD:

Dynamic Mapping of Activity-selective Descriptor value ranges

FSC:

Family-selective compounds

GPCR:

G-protein coupled receptor

HR:

Hit rate

JP:

Jarvis-Patrick clustering

MDDR:

Molecular Drug Data Report

RP:

Recursive partitioning

RR:

Recall (recovery) rate

Tc:

Tanimoto coefficient

TSC:

Target-selective compounds

WA:

Ward’s clustering

References

  1. Bredel M, Jacoby E (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nature Rev Genet 5: 262– 275

    Article  CAS  Google Scholar 

  2. Spring DR (2005) Chemical genetics to chemical genomics: small molecules offer big insights. Chem Soc Rev 34: 472–482

    Article  PubMed  CAS  Google Scholar 

  3. Mestres J, Martin-Couce L, Gregori-Puigjane E, Cases M, Boyer S (2006) Ligand-based approaches to in silico pharmacology: nuclear receptor profiling. J Chem Inf Model 46: 2725–2736

    Article  PubMed  CAS  Google Scholar 

  4. Paolini GV, Shapland RHB, van Hoorn WP, Mason JS, Hopkins AL (2006) Global mapping of pharmacological space. Nature Biotechnol 24: 805–815

    Article  CAS  Google Scholar 

  5. Keiser MJ, Roth BL, Armbruster BN, Ernberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nature Biotechnol 25: 197–206

    Article  CAS  Google Scholar 

  6. Stumpfe D, Ahmed HEA, Vogt I, Bajorath J (2007) Methods for computer-aided chemical biology. Part 1: design of a benchmark system for the evaluation of compound selectivity. Chem Biol Drug Des 70: 182–194

    Article  PubMed  CAS  Google Scholar 

  7. Vogt I, Stumpfe D, Ahmed HEA, Bajorath J (2007) Methods for computer-aided chemical biology. Part 2: evaluation of compound selectivity using 2D molecular fingerprints. Chem Biol Drug Des 70: 195–2005

    Article  PubMed  CAS  Google Scholar 

  8. Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. ChemBioChem 3: 928–944

    Article  PubMed  CAS  Google Scholar 

  9. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there. Nature Rev Drug Discov 5: 993–996

    Article  CAS  Google Scholar 

  10. Klabunde T, Evers A (2005) GPCR Antitarget modelling: pharmacophore models for biogenic amine binding GPCRs to avoid GPCR-mediated side effects. ChemBioChem 6: 876–889

    Article  PubMed  CAS  Google Scholar 

  11. Eckert H, Vogt I, Bajorath J (2006) Mapping algorithms for molecular similarity analysis and ligand-based virtual screening: design of DynaMAD and comparison with MAD and DMC. J Chem Inf Model 46: 1623–1634

    Article  PubMed  CAS  Google Scholar 

  12. Molecular Operating Environment, Chemical Computing Group, Montreal, Quebec, Canada. http://www.chemcomp.com

  13. Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput 22: 1025–1034

    Article  Google Scholar 

  14. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Statist Assoc 58: 236–244

    Article  Google Scholar 

  15. MACCS Structural Keys, MDL Elsevier, San Leandro, CA, USA. http://www.mdl.com

  16. Bender A, Mussa Y, Glen RC, Reiling S (2004) Molecular similarity searching using atom environments, information-based feature selection, and a naive Bayesian classifier. J Chem Inf Comput Sci 44: 170–178

    Article  PubMed  CAS  Google Scholar 

  17. Bender A, Mussa Y, Glen RC, Reiling S (2004) Similarity searching of chemical databases using atom environment descriptors (MOLPRINT2D): evaluation of performance. J Chem Inf Comput Sci 44: 1708–1718

    Article  PubMed  CAS  Google Scholar 

  18. Willett P (2005) Searching techniques for databases of two- and three-dimensional structures. J Med Chem 48: 4183–4199

    Article  PubMed  CAS  Google Scholar 

  19. Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11: 1046–1053

    Article  PubMed  CAS  Google Scholar 

  20. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont California

    Google Scholar 

  21. R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  22. Irwin JJ, Shoichet BK (2005) ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model 45: 177–182

    Article  PubMed  CAS  Google Scholar 

  23. Brown RD, Martin YC (1996) Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J Chem Inf Comput Sci 36: 572– 584

    Article  CAS  Google Scholar 

  24. Rusinko AIII, Farmen MW, Lambert CG, Brown PL, Young SS (1999) Analysis of a large structure/biological activity data set using recursive partitioning. J Chem Inf Comput Sci 39: 1017–1026

    Article  PubMed  CAS  Google Scholar 

  25. van Rhee AM, Stocker J, Printzenhoff D, Creech C, Wagoner PK, Spear KL (2001) Retrospective analysis of an experimental high-throughput screening data set by recursive partitioning. J Comb Chem 3: 267–277

    Article  PubMed  CAS  Google Scholar 

  26. Perrone R, Berardi F, Colabufo NA, Leopoldo M, Lacivita E, Tortorella V, Leonardi A, Pogessi E, Testa R (2001) Trans-4-[4-(methoxyphenyl)cyclohexyl]-1-arylpiperazines: a new class of potent and selective 5-HT(1A) receptor ligands as conformationally constrained analogues of 4-[3-(5-methoxy-1,2,3,4-tetrahydronaphtalen-1-yl)propyl]-1-arylpiperazines. J Med Chem 44: 4431–4442

    Article  PubMed  CAS  Google Scholar 

  27. Fiorino F, Perissutti E, Serverino B, Santagada V, Cirillo D, Terracciano S, Massarelli P, Bruni G, Collavoli E, Renner C, Caliendo G (2005) New 5-hydroxytrypatamine1A receptor ligands containing a norbornene nucleus: synthesis and in vitro pharmacological evaluation. J Med Chem 48: 5495–5503

    Article  PubMed  CAS  Google Scholar 

  28. Peglion JL, Goument B, Despaux N, Charlot V, Giraud H, Nisole C, Newman–Tancredi AN, Dekeyne A, Bertrand M, Genissel P, Millan MJ (2002) Improvement in the selectivity and metabolic stability of the serotonin 5-HT(1A) ligand, S 15535: a series of cis- and trans-2-(arylcycloalkylamine) 1-indanols. J Med Chem 45: 165–176

    Article  PubMed  CAS  Google Scholar 

  29. Perrone R, Berardi F, Colabufo NA, Leopoldo M, Tortorella V (2000) 1-Substituted-4-[3-(1,2,3,4-tetrahydro-5- or 7-methoxynaphthalen-1-yl)propyl]piperazines: influence of the N-1 piperazine substituent on 5-HT(1A) receptor affinity and selectivity versus D2 and alpha1 receptors. Part 6. Bioorg Med Chem 8: 873–881

    Article  PubMed  CAS  Google Scholar 

  30. Enquehard-Gueiffier C, Hubner H, El Hakmaoui A, Allouchi H, Gmeiner P, Argiolas A, Melis MR, Gueiffier A (2006) 2-[(4-Phenylpiperazin-1-yl)methyl]imidazo(di)azines as selective D4-ligands. Induction of penile erection by 2-[4-(2-methoxyphenyl)piperazin-1-ylmethyl]imidazol[1,2-a]pyridine (PIP3EA), a potent and selective D4 partial agonist. J Med Chem 49: 3938–3947

    Article  Google Scholar 

  31. Reitz A, Baxter E, Codd E, Davis C, Jordan A, Maryanoff B, Maryanoff C, McDonnell M, Powell E, Renzi M, Schott M, Scott M, Shank R, Vaught J (1998) Orally active benzamide antipsychotic agents with affinity for dopamine D2, serotonin 5-HT1A , and adrenergic α1 receptors. J Med Chem 41: 1998–2009

    Article  Google Scholar 

  32. Molecular Drug Data Report (MDDR), Elsevier MDL, San Leandro, CA, USA. http://www.mdl.com

  33. Maryanoff B, McComsey D, Martin G, Shank R (1998) Azepinoindole derivatives with high affinity for brain dopamine and serotonin receptors. Bioorg Med Chem Lett 8: 983–988

    Article  PubMed  CAS  Google Scholar 

  34. Heinrich T, Bottcher H, Prucher H, Gottschlich R, Ackermann K, Amsterdam C (2006) 1-(1-Phenethylpiperidin-4-yl)-1-phenylethanols as potent and highly selective 5-HT2A antagonists. Chem Med Chem 1: 245–255

    PubMed  CAS  Google Scholar 

  35. Obniska J, Kotaczkowski M, Minol S, Nedza K, Dybata M, Bojarski A (2005) Synthesis, anticonvulsant properties and 5-HT1A /5-HT2A receptor affinity of new N-[(4-arylpiperazin-1-yl)-propyl]-2-aza-spiro[4.4]nonane and [4.5]decane-1,3-dione derivatives. Pharmacol Rep 57: 336–344

    PubMed  CAS  Google Scholar 

  36. Byrtus H, Pawlowski M, Czopek A, Bojarski A, Duszynska B, Nowak G, Klodzinska A, Tatarczynska E, Wesolowska A, Wojcik E (2005) Synthesis and 5-HT1A, 5-HT2A receptor activity of new ß-tetralonohydantoins. Eur J Med Chem 40: 820–829

    Article  PubMed  CAS  Google Scholar 

  37. Patane E, Pittala V, Guerrera F, Salerno L, Romeo G, Siracusa M A, Russo F, Manetti F, Botta M, Mereghetti I, Cagnotto A, Mennini T (2005) Synthesis of 3-arylpiperazinylalkylpyrrolo [3,2-d]pyrimidine-2,4-dione derivatives as novel, potent, and selective alpha1-adrenoceptor ligands. J Med Chem 48: 2420–2431

    Article  PubMed  CAS  Google Scholar 

  38. Bolognesi ML, Budriesi R, Chiarini A, Poggesi E, Leonardi A, Melchiorre C (1998) Design, synthesis, and biological activity of prazosin-related antagonists. Role of the piperazine and furan units of prazosin on the selectivity for alpha1-adrenoreceptor subtypes. J Med Chem 41: 4844–4853

    Article  PubMed  CAS  Google Scholar 

  39. Balle T, Perregaard J, Ramirez MT, Larsen AK, Soby KK, Liljefors T, Andersen K (2003) Synthesis and structural-affinity relationship investigations of 5-heteroaryl-substituted analogues of the antipsychotic sertindole. A new class of highly selective alpha(1)adrenoceptor antagonists. J Med Chem 46: 265–283

    Article  PubMed  CAS  Google Scholar 

  40. Betti L, Botta M, Corelli F, Floridi M, Giannaccini G, Maccari L, Manetti F, Strappaghetti G, Tafi A, Corsano S (2002) Alpha(1)-adrenoceptor antagonists. 4. Pharmacophore-based design, synthesis, and biological evaluation of new imidazo-, benzimidazo-, and indoloarylpiperazine derivatives. J Med Chem 45: 3603–3611

    Article  PubMed  CAS  Google Scholar 

  41. Zhang A, Neumeyer JL, Baldessarini RJ (2007) Recent progress in development of dopamine receptor subtype–selective agents: potential therapeutics for neurological and psychiatric disorders. Chem Rev 107: 274–302

    Article  PubMed  CAS  Google Scholar 

  42. Zhang A, Zhang Y, Branfman AR, Baldessarini RJ, Neumeyer JL (2007) Advances in development of dopaminergic aporphinoids. J Med Chem 50: 171–181

    Article  PubMed  CAS  Google Scholar 

  43. Sasikumar TK, Burnett DA, Zhang H, Smith-Torhan AS, Fawzi A, Lachowicz JE (2006) Hydrazides of clozapine: a new class of D1 dopamine receptor subtype selective antagonists. Bioorg Med Chem Lett 16: 4543–4547

    Article  PubMed  CAS  Google Scholar 

  44. Sukalovic V, Andric D, Roglic G, Kostic-Rajacic S, Schrattenholz A, Soskic V (2005) Synthesis, dopamine D2 receptor binding studies and docking analysis of 5-[3-(4-arylpiperazine-1-yl)propyl]-1H-benzimidazole, 5-[2-(4-arylpiperazin-1-yl)ethoxy]-1H-benzimidazole and their analogs. Eur J Med Chem 40: 481–493

    Article  PubMed  CAS  Google Scholar 

  45. Su J, Tang H, McKittrick BA, Burnett DA, Zhang H, Smith-Torhan AS, Fawzi A, Lachowicz J (2006) Modification of the clozapine structure by parallel synthesis. Bioorg Med Chem Lett 16: 4548–4553

    Article  PubMed  CAS  Google Scholar 

  46. Vangveravong S, McElveen E, Taylor M, Xu J, Tu Z, Luedtke RR, Mach RH (2006) Synthesis and characterization of selective dopamine D2 receptor antagonists. Bioorg Med Chem 14: 815–825

    Article  PubMed  CAS  Google Scholar 

  47. Bettinetti L, Schlotter K, Hubner H, Gmeiner P (2002) Interactive SAR studies: rational discovery of super-potent and highly selective dopamine D3 receptor antagonists and partial agonists. J Med Chem 45: 4594–4597

    Article  PubMed  CAS  Google Scholar 

  48. Geneste H, Backfisch G, Braje W, Delzer J, Haupt A, Hutchins C, King L, Lubisch W, Steiner G, Teschendorf H, Unger L, Wernet W (2006) Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: quinolin(di)one and benzazepin(di)one derivatives. Bioorg Med Chem Lett 16: 658–662

    Article  PubMed  CAS  Google Scholar 

  49. Macdonald G, Branch C, Hadley M, Johnson C, Nash D, Smith A, Stemp G, Thewlis K, Vong A, Austin N, Jeffrey P, Winborn K, Boyfield I, Hagan J, Middlemiss D, Reavill C, Riley G, Waston J, Wood M, Paker S, Ashby JC (2003) Design and synthesis of trans-3-(2-(4-((3-(3-(5-methyl-1-1,2,4-oxadiazolyl))-phenyl) carboxamido)cyclohexyl)ethyl)-7-methylsulphonyl-2,3,4,5-tetrahydro1H-3- benzazepine(SB-414796): a potent and selective dopamine D3 receptor antagonist. J Med Chem 46: 4952–4964

    Article  PubMed  CAS  Google Scholar 

  50. Geneste H, Amberg W, Backfisch G, Beyerbach A, Braje W, Delzer J, Haupt A, Hutchins C, King L, Sauer D, Unger L, Wernet W (2006) Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: variations on the 1H-pyrimidin-2-one theme. Bioorg Med Chem Lett 16: 658–662

    Article  PubMed  CAS  Google Scholar 

  51. Grundt P, Carlson EE, Cao J, Bennett CJ, McElveen E, Taylor M, Luedtke RR, Newman AH (2005) Novel heterocyclic trans olefin analogues of N-{4-[4-(2, 3-dichlorophenyl)piperazin-1-yl] butyl}arylcarboxamides as selective probes with high affinity for the dopamine D3 receptor subtype. J Med Chem 48: 839–848

    Article  PubMed  CAS  Google Scholar 

  52. Kulagowski J, Broughton H, Curtis N, Mawer I, Ridgill M, Baker R, Emms F, Freedmann S, Marwood R, Patel S, Patel S, Ragan C, Leeson P (1996) 3-4-(4-Chlorophenyl)piperazin-1-yl]-methyl]-1H-pyrrolo[2,3-b]pyridine: an antagonist with high affinity and selectivity for the human dopamine D4 receptor. J Med Chem 39: 1941–1942

    Article  PubMed  CAS  Google Scholar 

  53. Faraci WS, Zorn SH, Sanner MA, Fliri A (1998) The discovery of potent and selective dopamine D4 receptor antagonists. Curr Opin Chem Biol 2: 535–540

    Article  PubMed  CAS  Google Scholar 

  54. Moll A, Hubner H, Gmeiner P, Troschutz R (2002) Phenylpiperazinylmethylindolecarboxylates and derivatives as selective D(4)-ligands. Bioorg Med Chem 10: 1671–1679

    Article  PubMed  CAS  Google Scholar 

  55. Hodgetts KJ, Kieltyka A, Brodbeck R, Tran JN, Wasley WF, Thurkauf A (2001) 6-(4-Benzylpiperazin-1-yl)benzodioxanes as selective ligands at cloned primate dopamine D(4) receptors. Bioorg Med Chem 9: 1671–1679

    Article  Google Scholar 

  56. Zhao H, Thurkauf A, He X, Hodgetts K, Zhang X, Rachwal S, Kover R, Hutchison A, Peterson J, Kieltyka A, Brodbeck R, Primus R, Wasley W (2002) Indoline and piperazine containing derivatives as a novel class of mixed D2/D4 receptor antagonists. Part 1: Identification and structure–activity relationships. Bioorg Med Chem Lett 12: 3105–3109

    Article  PubMed  CAS  Google Scholar 

  57. Egle I, Barriault N, Bordeleau M, Drage J, Dube L, Peraqine J, Mazzocco L, Arora J, Jarvie K, Tehim A (2004) N-(1-benzylpyrrolidin-3-yl)arylbenzamides as potent and selective human dopamine D4 antagonists. Bioorg Med Chem Lett 14: 4847–4850

    Article  PubMed  CAS  Google Scholar 

  58. Zhao H, He X, Thurkauf A, Hoffman D, Kieltyka A, Brodbeck R, Primus R, Wasley W (2002) Indoline and piperazine containing derivatives as a novel class of mixed D2/D4 receptor antagonists. Part 2: Asymmetric synthesis and biological evaluation. Bioorg Med Chem Lett 12: 3111–3115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Bajorath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogt, I., Ahmed, H.E.A., Auer, J. et al. Exploring structure–selectivity relationships of biogenic amine GPCR antagonists using similarity searching and dynamic compound mapping. Mol Divers 12, 25–40 (2008). https://doi.org/10.1007/s11030-008-9071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-008-9071-2

Keywords

Navigation