Skip to main content
Log in

New chromogenic substrates of human neutrophil cathepsin G containing non-natural aromatic amino acid residues in position P1 selected by combinatorial chemistry methods

  • Full Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Specificity of human cathepsin G was explored using combinatorial chemistry methods. Deconvolution of a tetrapeptide library, where 5-amino-2-nitrobenzoic acid served as a chromophore attached at the C-terminus, yielded the active sequence Phe-Val-Thr-Tyr-Anb5,2-NH2. This sequence was used for a second-generation library with the general formula Ac-Phe-Val-Thr-X-Anb5,2-NH2, where position X was replaced with several amino acids: l-pyridyl- alanine (Pal), 4-nitro-l-phenylalanine (Nif), 4-amino-l- phenylalanine (Amf), 4-carboxy-l-phenylalanine (Cbf), 4-guanidine-l-phenylalanine (Gnf), 4-methyloxycarbonyl- l-phenylalanine (Mcf), 4-cyano-l-phenylalanine (Cyf), Phe, Tyr, Arg and Lys. Specificity ligand parameters, k cat and K M, with human cathepsin G were determined for all chromogenic substrates synthesized. The highest value of the specificity constant (k cat/K M) was obtained for a substrate with the Gnf residue in position P1. This peptide was 10 times more active than the second most active substrate which contained the Amf residue. The following order of potency was established: Gnf >  > Amf > Tyr = Phe > Arg= Lys > Cyf. Substrate specificity for cathepsin G is greatly enhanced when an aromatic side chain and a strong positive charge are incorporated in residue P1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wa̧torek W, Farley D, Salvasen G and Travis J (1988). Neutrophil elastase and cathepsin G: structure, function and biological control. Adv Exp Med Biol 240: 23–31

    CAS  Google Scholar 

  2. Campbell EJ, Silverman EK and Campbell MA (1989). Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity. J Immunol 143: 2961–2968

    CAS  Google Scholar 

  3. Shafer WM, Katzif S, Bowers S, Fallon M, Hubalek M, Reed MS, Veprek P and Pohl J (2002). Tailoring an antibacterial peptide of human lysosomal cathepsin G to enhance its broad-spectrum action against antibiotic-resistant bacterial pathogens. Curr Pharm Des 8: 695–702

    Article  CAS  Google Scholar 

  4. Yamazaki T and Aoki Y (1998). Cathepsin G enhances human natural killer cytotoxicity. Immunology 93: 115–121

    Article  CAS  Google Scholar 

  5. Schechter NM, Wang ZM, Blacher RW, Lessin SR, Lazarus GS and Rubin H (1994). Determination of the primary structures of human skin chymase and cathepsin G from cutaneous mast cells of urticaria pigmentosa lesions. J Immunol 152: 4062–4069

    CAS  Google Scholar 

  6. Duranton J, Adam C and Bieth JG (1998). Kinetic mechanism of the inhibition of cathepsin G by alpha 1-antichymotrypsin and alpha 1-proteinase inhibitor. Biochemistry 37: 11239–11245

    Article  CAS  Google Scholar 

  7. Zamolodchikova TS, Vorotyntseva TI and Antonov VK (1995). Duodenase, a new serine protease of unusual specificity from bovine duodenal mucosa. Purification and properties. Eur J Biochem 227: 866–872

    CAS  Google Scholar 

  8. Tsu CA, Perona JJ, Schellenberger V, Turck CW and Craik CS (1996). The substrate specificity of Uca pugilator collagenolytic serine protease 1 correlates with the bovine type I collagen cleavage sites. J Biol Chem 269: 19565–16572

    Google Scholar 

  9. Hof P, Mayr I, Huber R, Korzus E, Potempa J, Travis J, Powers JC and Bode W (1996). The 1.8 A crystal structure of human cathepsin G in complex with Suc-Val-Pro-PheP-(OPh)2: a Janus-faced proteinase with two opposite specificities. EMBO J 15: 5481–5491

    CAS  Google Scholar 

  10. Hojo K, Maeda M, Iguchi S, Smith T, Okamoto H and Kawasaki K (2000). Amino acids and peptides. XXXV. Facile preparation of p-nitroanilide analogs by the solid-phase method. Chem Pharm Bull 48: 1740–1745

    CAS  Google Scholar 

  11. Zabłlotna E, Dysasz H, Lesner A, Jaśkiewicz A, Kaźmierczak K, Miecznikowska H and Rolka K (2004). A simple method for selection of trypsin chromogenic substrates using combinatorial chemistry approach. Biochem Biophys Res Commun 319: 185–188

    Article  CAS  Google Scholar 

  12. Kaźmierczak K, Zabłlotna E, Jaśkiewicz A, Miecznikowska H and Rolka K (2003). Selection of low-molecular-mass trypsin and chymotrypsin inhibitors based on the binding loop of CMTI-III using combinatorial chemistry methods. Biochem Biophys Res Commun 310: 811–814

    Article  CAS  Google Scholar 

  13. Sole NA and Barany G (1992). Optimization of solid-phase synthesis of [Ala8]-dynorphin A. J Org Chem 57: 5399–5403

    Article  CAS  Google Scholar 

  14. Hougten RH, Pinilla C, Blondelle SE, Appel JR, Dooley CT and Cuervo JH (1991). Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354: 84–90

    Article  Google Scholar 

  15. Furka A, Sebestyn F, Asgedom M and Dib G (1991). General method for rapid synthesis of multicomponent peptide mixtures. Int J Pept Protein Res 37: 487–494

    Article  CAS  Google Scholar 

  16. Wysocka M, Kwiatkowska B, Rzadkiewicz M, Lesner A and Rolka K. (2007). Selection of new chromogenic substrates of serine proteinases using combinatorial chemistry methods. Comb Chem High Trough S 3: 171–180

    Article  Google Scholar 

  17. Ostresh JM, Blondelle SE, Dorner B and Houghten RA (1996). Generation and use of nonsupport-bound peptide and peptidomimetic combinatorial libraries. Methods Enzymol 267: 220–228

    Article  CAS  Google Scholar 

  18. Baugh RJ and Travis J (1976). Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry 15: 836–841

    Article  CAS  Google Scholar 

  19. Furlong ST, Mauger RC, Strimpler AM, Liu YP, Morris FX and Edwards PD (2002). Synthesis and physical characterization of a P1 arginine combinatorial library, and its application to the determination of the substrate specificity of serine peptidases. Bioorg Med Chem 10: 3637–3650

    Article  CAS  Google Scholar 

  20. Lesner A, Brzozowski K, Kupryszewski G and Rolka K (2000). Design, chemical synthesis and kinetic studies of trypsin chromogenic substrates based on the proteinase binding loop of Cucurbita maxima trypsin inhibitor (CMTI-III). Biochem Biophys Res Commun 269: 81–85

    Article  CAS  Google Scholar 

  21. Lesner A, Kupryszewski G and Rolka K (2001). Chromogenic substrates of bovine beta-trypsin: the influence of an amino acid residue in P1 position on their interaction with the enzyme. Biochem Biophys Res Commun 285: 1350–1354

    Article  CAS  Google Scholar 

  22. Tanaka T, Minematsu Y, Reilly CF, Travis J and Powers JC (1985). Human leukocyte cathepsin G. Subsite mapping with 4-nitroanilides, chemical modification, and effect of possible cofactors. Biochemistry 24: 2040–2047

    Article  CAS  Google Scholar 

  23. Powers JC, Tanaka T, Harper JW, Minematsu Y, Barker L, Lincoln D, Crumley KV, Fraki JE, Schechter NM and Lazarus GG (1985). Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Biochemistry 24: 2048–2058

    Article  CAS  Google Scholar 

  24. Polanowska J, Krokoszynska I, Czapinska H, Watorek W, Dadlez M and Otlewski J (1998). Specificity of human cathepsin G. Biochim Biophys Acta 1386: 189–198

    CAS  Google Scholar 

  25. Gosalia DN, Salisbury CM, Ellman JA and Diamond SL (2005). High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays. Mol Cell Proteomics 4: 626–636

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Lesner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wysocka, M., Łȩgowska, A., Bulak, E. et al. New chromogenic substrates of human neutrophil cathepsin G containing non-natural aromatic amino acid residues in position P1 selected by combinatorial chemistry methods. Mol Divers 11, 93–99 (2007). https://doi.org/10.1007/s11030-007-9063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-007-9063-7

Keywords

Navigation