Skip to main content
Log in

The Influence of Internal Stresses on the Aging of Polymer Composite Materials: a Review

  • Published:
Mechanics of Composite Materials Aims and scope

The formation of internal stresses in polymer composite materials (PCMs) caused by different elastic moduli and thermal expansion coefficients of polymer resin and reinforcing fibers, as well as by swelling due to the moisture uptake is discussed. The influence of thermal cycles on the internal stresses and strength of the materials was studied in dry and wet atmospheres. It shown that thermal cycles cause a periodic jumps in the stresses at lowfrequency mechanical loadings, during which the mechanical properties are degraded due to the formation of microscopic cracks in the polymer matrix. The relative changes in the strength, elastic modulus, glass-transition temperatures, moisture diffusion coefficient, and other PCM physical characteristics are proportional to the logarithm of the number of cycles and also depend on the form and size of specimens, amplitude, conditions, and length of thermal cycles. A prolonged action of external actions relaxes the internal stresses and reduces their influence on the aging of PCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. Roylance and M. Roylance, “Weathering of fiber-reinforced epoxy composites,” Polym. Eng. Sci., 18, No. 4, 249-254 (1978).

    Article  CAS  Google Scholar 

  2. T. A. Collings, “The effect of observed climatic conditoins pn the moisture equilibrium level of fibre-reinforced plastics,” Composites, 17, No. 1, 33-41 (1986).

    Article  CAS  Google Scholar 

  3. D. J. Baker, Ten-Year Ground Exposure of Composite Materials Used on the Bell Model 206L Helicopter Flight Service Program, Nasa Technical Paper 3468, 54 p. (1994).

    Google Scholar 

  4. R. Vodichka, “Environmental exposure of boron-epoxy composite material,” DSTO Aeronautical and Maritime Res. Lab., Melbourn, Australia, DSTO-TN-0309, 23 p. (2000).

  5. I. Nishizaki, H. Sakurada, and T. Tomiyama, “Durability of pultruded GFPR through ten-year outdoor exposure test,” Polymers, 7, 2494-2503 (2015).

    Article  CAS  Google Scholar 

  6. K. V. Pochiraju, G. A Schoeppner., and G. P. Tandon, Long-Term Durability of Polymeric Matrix Composites, Ed. K. V. Pochiraju, G. P. Tandon, G. A. Schoeppner, Boston, MA: Springer US. (2012).

  7. Ageing of Composites, Ed. R. Martin, Cambridje: Woodhead Publ. Ltd. (2008).

  8. O. V. Startsev, G. P. Mashinskaya, and V. A. Yartsev, “Molecular mobility and relaxation processes in an epoxy matrix, 2. Effects of weathering in humid subtropical climate,” Mech. Compos. Mater., 20, No. 4, 406-409 (1985).

    Article  Google Scholar 

  9. V. N. Bulmanis and O. V. Startsev, “Prediction of changes in the strength of polymer fiber composites as a result of climatic impact,” Yakutsk: Yakut. branch of the Siberian Branch of the USSR Academy of Sciences, Institute of Physics and Technology. problems of the North., 32 p. (1988).

  10. Y. M. Vapirov, V. V. Krivonos, and O. V. Startsev, “Interpretation of the anomalous change in the properties of carbonfiber-reinforced plastic KMU-1u during aging in different climatic regions,” Mech. Compos. Mater., 30, No. 2, 190-194 (1994).

    Article  Google Scholar 

  11. E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite materials: 1. Aging mechanisms,” Russ. Metallurgy (Metally), No. 10, 993-1000 (2011).

  12. E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 2. Relaxation of the initial structural nenequilibrium and through thickness gradient of properties,” Russ. Metallurgy (Metally), No. 10, 1001-1007 (2011).

  13. E. N. Kablov, O. V. Startsev, A. S. Krotov, and V. N. Kirillov, “Climatic aging of composite aviation materials: 3. Significant aging factors,” Russ. Metallurgy (Metally), No. 4, 323-329 (2012).

  14. V. O. Startsev and A. V. Slavin, “Resistance of carbon plastics and fiberglass plastics based on melt binders to the effects of moderately cold and moderately warm climates,” Tr. VIAM: Electron. Scientific and Technical Zhurn., No. 5, Art. 12 (2021). URL: http://www.viam-works.ru (date of access: 20.06.2021). DOI: 10.18577 / 2307-6046-2021-0-5-114-126

  15. L. T. Startseva, S. V. Panin, O. V. Startsev, and A. S. Krotov, “Moisture diffusion in glass-fiber-reinforced plastics after their climatic ageing,” Dokl. Phys. Chem., 456, No. 1, 77-81 (2014).

    Article  CAS  Google Scholar 

  16. , E. N. Kablov and V.O. Startsev, “System analysis of the effect of climate on the mechanical properties of polymer composite materials according to the data of domestic and foreign sources (review),” Aviat. Materials and Technologies., No. 2, 47-58 (2018). DOI: https://doi.org/10.18577/2071-9140-2018-0-2-47-58

  17. A. V. Slavin and O. V. Startsev, “Properties of aviation fiberglass and carbon fiber at an early stage of climatic impact,” Tr. VIAM: Electron. Scientific and Technical Zhurn., No. 9 (69), Art. 08 (2018). URL: http://www.viam-works.ru (date of access: 20.06.2021). DOI: https://doi.org/10.18577/2307-6046-2018-0-9-71-82

  18. L. Belec, T. H. Nguyen, D. L. Nguyen, and J. F. Chailan, “Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macro-scale,” Composites: Part A, 68, No. 1, P. 235-241 (2015).

    Article  CAS  Google Scholar 

  19. F. Awaja, S. Zhang, M. Tripathi, A. Nikiforov, and N. Pugno, “Cracks, microcracks and fracture in polymer structures: Formation, detection, autonomic repair,” Progress in Mater. Sci., 83, 536-573 (2016).

    Article  CAS  Google Scholar 

  20. H. Fang, Y. Bai, W. Liu, Y. Qi, and J. Wang, “Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments,” Composites: Part B, 164, 129-143 (2019).

    Article  CAS  Google Scholar 

  21. E. N. Kablov and V. O. Startsev, “Climatic aging of polymer composite materials for aviation. 1. Assessment of the influence of significant influencing factors,” Deformation and Destruction of Materials, No. 12, 7-16 (2019).

  22. E. N. Kablov and V. O. Startsev, “Climatic aging of polymer composite materials for aviation. 2. Development of research methods for the early stages of aging,” Deformation and Destruction of Materials, No. 1, 15-21 (2020).

  23. O. V. Startsev, M. P. Lebedev, and A. K. Kychkin, “Aging of polymer composite materials in an extremely cold climate,” Izv. Altai. State Univ., No. 1 (111), 41-51 (2020).

  24. P. K. Dutta, “Structural fiber composite materials for cold regions,” J. Cold Regions Eng., 2, No. 3, 124-134 (1988).

    Article  Google Scholar 

  25. Bazli, Ashrafi, Jafari, Zhao, Raman, and Bai, “Effect of fibers configuration and thickness on tensile behavior of GFRP laminates exposed to harsh environment,” Polymers, 11, No. 9, (2019).

  26. P. K. Dutta and D. Hui, “Low-temperature and freeze-thaw durability of thick composites,” Composites: Part B, 27, No. 3-4, 371-379 (1996).

    Article  Google Scholar 

  27. V. O. Startsev, “Across-the-thickness gradient of the interlaminar shear strength of a cfrp after its long-term exposure to a marine climate,” Mech. Compos. Mater., 52, No. 2, 171-176 (2016).

    Article  CAS  Google Scholar 

  28. A. Baker, S. Dutton, and D. Kelly, Composite Materials for Aircraft Structures, 2nd ed., Reston (2004).

  29. H. T. Hahn, “Residual Stresses in Polymer Matrix Composite Laminates,” J. Compos. Mater., 10, No. 4, 266-278 (1976).

    Article  CAS  Google Scholar 

  30. N. Hancox, “Thermal effects on polymer matrix composites: Part 1. Thermal cycling,” Mater. Des., 19, No. 3, 85-91 (1998).

    Article  CAS  Google Scholar 

  31. J. A. Nairn, “Thermoelastic analysis of residual stresses in unidirectional, high-performance composites,” Polym. Compos., 6, No. 2, 123-130 (1985).

    Article  CAS  Google Scholar 

  32. E. C. Peterson, R. R. Patil, A. R. Kallmeyer, and K. G. Kellogg, “A micromechanical damage model for carbon fiber composites at reduced temperatures,” J. Compos. Mater., 42, No. 19, 2063-2082 (2008).

    Article  CAS  Google Scholar 

  33. L. G. Zhao, N. A. Warrior, and A. C. Long, “A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites,” Int. J. Solids Struct., 43, No. 18-19, 5449-5467 (2006).

    Article  CAS  Google Scholar 

  34. L. Yang, Y. Yan, J. Ma, and B. Liu, “Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiber-reinforced polymer-matrix composites,” Comput. Mater. Sci., 68, 255-262 2013.

    Article  CAS  Google Scholar 

  35. M. M. Shokrieh, A. Daneshvar, and S. Akbari, “Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes,” Mater. Des., 53, 209-216 (2014).

    Article  CAS  Google Scholar 

  36. M. A. Umarfarooq, P. S. S. Gouda, A. Nandibewoor, N. R Banapurmath., and G. B. V. Kumar, “Determination of residual stresses in GFRP composite using incremental slitting method by the aid of strain gauge,” AIP Conf. Proc., 2057, Article 020038 (2019).

  37. A. Jafarpour, M Safarabadi., M. Haghighi-Yazdi, and A. Yousefi, “Numerical study of curing thermal residual stresses in GF/CNF/epoxy nanocomposite using a random generator model,” Mech. Adv. Mater. Struct., 1, No. 11 (2020).

  38. O. V. Startsev, I. I. Perepechko, L. T. Startseva, and G. P. Mashinskaya, “Structural changes in plasticized reticular amorphose polymer,” Vysokomol. Soed., Ser. B, 25, No. 6, 457-461 (1983).

    CAS  Google Scholar 

  39. M. J. Adamson, “Thermal expansion and swelling of cured epoxy resin used in graphite/epoxy composite materials,” J. Mater. Sci., 15, No. 7, 1736-1745 (1980).

    Article  CAS  Google Scholar 

  40. J. P. Komorowski, “Hygrothermal effects in continuos fibre reinforced composites: part 2: Physical properties,” Nat. Res. Council Canada, Nat. Aeronautical Establishment, Structures and Mater. Lab.,Aeronautical Note NAE-AN-10, NRC no 22700, Ottawa (1983).

  41. B. D. Harper and Y. Weitsman, “On the effects of environmental conditioning on residual stresses in composite laminates,” Int. J. Solids Struct., 21, No. 8, 907-926 (1985).

    Article  Google Scholar 

  42. K. Liao and Y.-M. Tan, “Influence of moisture-induced stress on in situ fiber strength degradation of unidirectional polymer composite,” Composites: Part B, 32, No. 4, 365-370 (2001).

    Article  Google Scholar 

  43. Residual Stresses in Composite Materials, Ed. M. M. Shokrieh (2014).

  44. R. Ghaedamini, A. Ghassemi, and A. Atrian, “A comparative experimental study for determination of residual stress in laminated composites using ring core, incremental hole drilling, and slitting methods,” Mater. Res. Express., 6, No. 2, Article 025205 (2018).

  45. K. K. Mahato, M. J. Shukla, D. S. Kumar, and B. C. Ray, “In- service performance of fiber reinforced polymer composite in different environmental conditions: A review,” J. Adv. Res. Manufacturing, Mater. Sci. Metall. Eng., 1, No. 2, 55-88 (2014).

    Google Scholar 

  46. W. B. Liau and F. P. Tseng, “The effect of long-term ultraviolet light irradiation on polymer matrix composites,” Polym. Compos., 19, No. 4, 440-445 (1998).

    Article  CAS  Google Scholar 

  47. J. Cinquin and B. Medda, “Influence of laminate thickness on composite durability for long term utilisation at intermediate temperature (100-150°C),” Composites Science and Technology, 69, No. 9, 1432-1436 (2009).

    Article  CAS  Google Scholar 

  48. F. Azimpour-Shishevan, H. Akbulut, and M. A. Mohtadi-Bonab, “Effect of thermal cycling on mechanical and thermal properties of basalt fibre-reinforced epoxy composites,” Bulletin Mater. Sci., 43, No. 1, 88 (2020).

    Article  CAS  Google Scholar 

  49. C. T. Herakovich and M. W. Hyer, “Damage-induced property changes in composites subjected to cyclic thermal loading,” Eng. Fracture Mech., 25, No. 5-6, 779-791 (1986).

    Article  Google Scholar 

  50. A. A Fahmy. and T. G. Cunningham, “Investigation of thermal fatigue in fiber composite materials,” NASA CR-2641, 60 p. (1976).

  51. M. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Compos. Sci. Technol., 64, No. 10-11, 1725-1735 (2004).

    Article  CAS  Google Scholar 

  52. M. C. Lafarie-Frenot, S. Rouquié, N. Q. Ho, and V. Bellenger, “Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling,” Composites: Part A, 37, No. 4, 662-671 (2006).

    Article  Google Scholar 

  53. S. Y. Park, H. S. Choi, W. J. Choi, and H. Kwon, “Effect of vacuum thermal cyclic exposures on unidirectional carbon fiber/epoxy composites for low earth orbit space applications,” Composites: Part B, 43, No. 2, 726-738 (2012).

    Article  CAS  Google Scholar 

  54. S. Mahdavi, S. K. Gupta, and M. Hojjati, “Thermal cycling of composite laminates made of out-of-autoclave materials,” Sci. Eng. Compos. Mater., 25, No. 6, 1145-1156 (2018).

    Article  CAS  Google Scholar 

  55. A. Jafari, H. Ashrafi, M. Bazli, and T. Ozbakkaloglu, “Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries,” Compos. Struct., 223, 110959 (2019).

    Article  Google Scholar 

  56. S. A. Grammatikos, R. G. Jones, M. Evernden, and J. R. Correia, “Thermal cycling effects on the durability of a pultruded GFRP material for off-shore civil engineering structures,” Compos. Struct., 153, 297-310 (2016).

    Article  Google Scholar 

  57. J. M. Sousa, J. R. Correia, S. Cabral-Fonseca, and A. C. Diogo, “Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications,” Compos. Struct., 116, No. 1, 720-731 (2014).

    Article  Google Scholar 

  58. T. K. Tsotsis, “Effects of sub-freezing temperatures on graphite/epoxy composite materials,” J. Eng. Mater. Techn., 111, No. 4, 438-439 (1989).

    Article  CAS  Google Scholar 

  59. C. J. Jones, R. F. Dickson, T. Adam, H. Reiter, and B. Harris, “The environmental fatigue behaviour of reinforced plastics,” Proc. R. Soc. London, Ser. A, 396, No. 1811, 315-338 (1984).

    Article  CAS  Google Scholar 

  60. J. Degrieck and W. Van Paepegem, “Fatigue damage modeling of fibre-reinforced composite materials: Review,” Appl. Mech. Rev., 54, No. 4, 279-300 (2001).

    Article  Google Scholar 

  61. J. Gomez and B. Casto, “Freeze-thaw durability of composite materials,” Report No. VTRC 96-R25, 13 p. (1996).

  62. M. Alkhader, X. Zhai, and F.-P. Chiang, “Experimental investigation of the synergistic effects of moisture and freezethaw cycles on carbon fiber vinyl-ester composites,” J. Compos. Mater., 52, No. 7, 919-930 (2018).

    Article  CAS  Google Scholar 

  63. V. M. Karbhari, “Response of fiber reinforced polymer confined concrete exposed to freeze and freeze-thaw regimes,” J. Composit. Construction., 6, No. 1, 35-40 (2002).

    Article  CAS  Google Scholar 

  64. H. Katogi, K. Takemura, and N. Iijima, “Residual flexural property of water absorbed CFRP during thermal cycling,” High Performance and Optimum Design of Structures and Materials II, 1, 277-286 (2016).

    Article  Google Scholar 

  65. S. Li, Y. Y. Lu, and H. T. Ren, “Durability of E-glass fiber reinforced polymer subjected to freeze-thaw cycle and sustained load,” Adv. Mater. Res., 163-167, 3219-3222 (2010).

    Article  Google Scholar 

  66. S. Y. Park, W. J. Choi, C. H. Choi, and H. S. Choi, “An experimental study into aging unidirectional carbon fiber epoxy composite under thermal cycling and moisture absorption,” Compos. Struct., 207, 81-92 (2019).

    Article  Google Scholar 

  67. T. G. Sorina and G. M. Gunyaev, “Structural carbon-fibre-reinforced plastics and their properties,” Polymer Matrix Composites, Chapman&Hall, 132-198 (1995).

  68. K. D. Cowley and P. W. R. Beaumont, “The measurement and prediction of residual stresses in carbon-fibre/polymer composites,” Compos. Sci. Technol., 57, No. 11, 1445-1455 (1997).

    Article  CAS  Google Scholar 

  69. O. V. Startsev, K. O. Prokopenko, A. A. Litvinov, A. S. Krotov, L. I. Anikhovskaya, and L. A. Dement’eva, “Study of thermohumid aging of aircraft fiberglass plastic,” Polym. Sci. Ser. D, 3, No. 1, 58-61 (2010).

    Article  Google Scholar 

  70. K. Aniskevich, V. Korkhov, J. Faitelsone, and J. Jansons, “Mechanical properties of pultruded glass fiber reinforced plastic after freeze-thaw cycling,” J. Reinf. Plast. Compos., 31, No. 22, 1554-1563 (2012).

    Article  CAS  Google Scholar 

  71. H. W. Lord and P. K. Dutta, “On the design of polymeric composite structures for cold regions applications,” J. Reinf. Plast. Compos., 7, No. 5, 435-458 (1988).

    Article  CAS  Google Scholar 

  72. O. V. Startsev and E. F. Nikishin, “Aging of polymer composite materials exposed to the conditions in outer space,” Mech. Compos. Mater., 29, No. 4, 338-346 (1994).

    Article  Google Scholar 

  73. T. Reynolds and H. McManus, “Accelerated Tests of Environmental Degradation in Composite Materials,” Composite Structures: Theory and Practice, Ed. P. Grant and C. Rousseau, West Conshohocken, PA: ASTM Int., 513-525 (2001).

  74. V. Issoupov, O. V. Startsev, C. Lacabanne, P. Demont, V. Viel-Ingutmbert, M. Dinguirard, and E. F. Nikishin, “Combined effect of thermal and mechanical stresses on the viscoelastic properties of a composite material for space structures,” Protection of Materials and Structures from Space Environment, Dordrecht: Kluwer Acad. Publ., 271-281 (2006).

  75. O. V. Startsev, A. Yu. Makhonkov, I. S. Deev, and E. F. Nikishin, “Aging of CFRP KMU-4L after 12 years of exposure at the International Space Station by the method of dynamic mechanical analysis. 2. Influence of the location of plates in multilayer packs,” Vopr. Materialoved., No. 4, P. 69-76 (2013).

  76. O. V. Startsev, Y. M. Vapirov, I. S. Deev, V. A. Yartsev, V. V. Krivonos, E. A. Mitrofanova, and M. A. Chubarova, “Effect of prolonged atmospheric aging on the properties and structure of carbon plastic,” Mech. Compos. Mater., 22, No. 4, 444-449 (1987).

    Article  Google Scholar 

  77. Aviation materials: Handbook in 13 volumes. V. 13. Climatic and microbiological resistance of non-metallic materials [in Russian], Ed. E. N. Kablova, M., 270 p. (2015).

  78. V. O. Startsev, V. I. Plotnikov, and Yu. V. Antipov, “Reversible effects of moisture in determining the mechanical properties of PCM under climatic influences,” Tr. VIAM: Elektron. Nauch. Teckhn. Zhurn (2018). URL: http://www.viam-works.ru (date of access 20.06.2021). - 2018. - No. 5. - Art. 12. DOI :. 10.18577 / 2307-6046-2018-0-5-110-118

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Startsev.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 57, No. 5, pp. 805-822, September-October, 2021. Russian DOI: 10.22364/mkm.57.5.01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kablov, E.N., Startsev, V.O. The Influence of Internal Stresses on the Aging of Polymer Composite Materials: a Review. Mech Compos Mater 57, 565–576 (2021). https://doi.org/10.1007/s11029-021-09979-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09979-6

Keywords

Navigation