Skip to main content

Advertisement

Log in

Effect of Mechanical Impact Energy on the Sorption and Diffusion of Moisture in Reinforced Polymer Composite Samples on Variation of Their Sizes

  • Published:
Mechanics of Composite Materials Aims and scope

The effect of mechanical impact energy on the sorption and diffusion of moisture in polymer composite samples on variation of their sizes was investigated. Square samples, with sides of 40, 60, 80, and 100 mm, made of a KMKU-2m-120.E0,1 carbon-fiber and KMKS-2m.120.T10 glass-fiber plastics with different resistances to calibrated impacts, were compared. Impact loading diagrams of the samples in relation to their sizes and impact energy were analyzed. It is shown that the moisture saturation and moisture diffusion coefficient of the impact-damaged materials can be modeled by Fick’s second law with account of impact energy and sample sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. ASTM Standard D7136. Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event, 2005.

  2. S. H. Go, H. G. Kim, H. J. Shin, M. S. Lee, H. G. Yoon, and L. K. Kwac, “The impact fracture behaviors of CFRP/EVA composites by drop-weight impact test,” Carbon Lett., 21, 23-32 (2017).

    Article  Google Scholar 

  3. X. Guo, Z. Li, H. Nie, W. He, and Z. Guan, “Impact resistance and damage tolerance of scarf-repaired composite structures: an experimental investigation,” Polymer Composites, 37, 1681-1694 (2016).

    Article  Google Scholar 

  4. M. Hebert, C. E. Rousseau, and A. Shukla, “Impact loading and drop weight impact response of glass reinforced polymer composites,” Compos. Struct., 84, 199-208 (2008).

    Article  Google Scholar 

  5. J. W. Kim and J. S. Lee, “Influence of interleaved films on the mechanical properties of carbon fiber fabric/polypropylene thermoplastic composites,” Materials (Basel.), 9, No 344, 12 (2016).

    Google Scholar 

  6. N. K. Singh, P. Rawat, and K. K. Singh, “Impact response of quasi-isotropic asymmetric carbon fabric/epoxy laminate infused with MWCNTs,” Adv. Mater. Sci. Eng., 2016. Article ID 7541468, 7, (2016).

  7. ASTM Standard D7137. Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. ASTM Int., West Conshohocken, PA, 2012.

  8. K. Berketis and D. Tzetzis, “The compression-after-impact strength of woven and non-crimp fabric reinforced composites subjected to long-term water immersion ageing,” J. Mater. Sci., 45, No. 20, 5611-5623 (2010).

    Article  Google Scholar 

  9. H. Park and C. Kong, “A study on low velocity impact damage evaluation and repair technique of small aircraft composite structure,” Composites: Part A., 42, No. 9, 1179-1188 (2011).

    Article  Google Scholar 

  10. O. V. Startsev, “Peculiarities of ageing of aircraft materials in a warm damp climate,” Polymer Yearbook 11, ed. by R. A. Petrick, Glasgow: Harwood Academic Publ., 91-110 (1994).

  11. O. V. Startsev, A. S. Krotov, and G. P. Mashinskaya, “Climatic ageing of organic fiber reinforced plastics: water effect,” Int. J. Polym. Mater., 37, No. 3-4, 161-171 (1997).

    Article  Google Scholar 

  12. O. V. Startsev, K. O. Prokopenko, A. A. Litvinov, A. S. Krotov, L. I. Anihovskaya, and L. A. Dementyev, “Investigation of thermomoisture aging of aviation fiberglass,” Klei. Germetiki. Tekhnologii, No. 8, 18-21 (2009).

  13. E. N. Kablov and O. V. Startsev, “Fundamental and applied investigations of corrosion and aging of materials in climatic conditions (review),” Aviats. Mater. Tekhnol., 4, No. 37, 38-52 (2015).

    Google Scholar 

  14. E. N. Kablov, O. V. Startsev, and S. V. Panin, “Moisture transfer in a carbon plastic with a destructed surface,” Dokl. RAN, 461, No. 4, 433-436 (2015).

    Google Scholar 

  15. V. O. Startsev, S. V. Panin, and O. V. Startsev, “Sorption and diffusion of moisture in polymer composite materials with drop-weight impact damage,” Mech. Compos. Mater., 51, No. 6, 761-770 (2016).

    Article  Google Scholar 

  16. V. O. Startsev, A. Yu. Makhonkov, E. A. Kotova, “Mechanical property and moisture resistance of PCMs with damage,” Aviats. Mater. Tekhnol., No. S1, 49-55 (2015).

  17. V. O. Startsev, A. Yu. Makhonkov, S. V. Panin, and O. V. Startsev, “Compression failure and moisture transfer in polymeric composite materials with mechanical damage,” All materials. Handbook, No. 7, 2-11 (2016).

  18. L. A. Dement’eva, A. A. Serezhenkov, L. I. Bocharova, N. F. Lukina, K. E. Kutsevich, and A. P. Petrova, “Properties of composite materials based on adhesive prepregs,” Polymer Sci. Ser. D., 6, No. 4, 298-303 (2013).

    Article  Google Scholar 

  19. A. P. Petrov, L. A. Dementyev, N. F. Lukina, and L. V. Chursova, “Adhesive binders for polymeric composite materials based on carbon and glass fillers,” Tr. VIAM (Elektr. Nauch.-Tekhn. Zhur.), No.9, 11 (2015).

  20. T. Gomez-del Rio, R. Zaera, E. Barbero, and C. Navarro, “Damage in CFRPs due to low velocity impact at low temperature,” Composites: Part B., 36, No. 1, 41-50 (2005).

    Article  Google Scholar 

  21. A. Perez, L. Gil, and S. Oller, “Non-destructive testing evaluation of low velocity impact damage in carbon fiber-reinforced laminated composites,” J. Ultrasound, 66, No. 2, 21-27 (2011).

    Google Scholar 

  22. E. S. Zelenskii A. M. Kuperman, Yu. A. Gorbatkina, V. G. Ivanova-Mumzhieva, and A. A. Berlin, “Reinforced plastics — modern structural materials,” Ros. Khim. Zhurn., 45, No. 2, 56-74 (2001).

    Google Scholar 

  23. E. N. Kablov, “Innovative elaborations of FGUP “VIAM” GNTs of the Russian Federation for the realization of “Strategic directions in the development of materials and their processing technologies for the period till 2030,” Aviats. Mater. Tekhnol., No. 1, 3-33 (2015).

  24. E. N. Kablov, Tendencies and Reference Points of the Innovative Development of Russia [in Russian], Sb. Nauch.-inf. Mater., M., VIAM (2013).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Startsev.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 54, No. 2, pp. 219-232 , March-April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Startsev, V.O., Il’ichev, A.V. Effect of Mechanical Impact Energy on the Sorption and Diffusion of Moisture in Reinforced Polymer Composite Samples on Variation of Their Sizes. Mech Compos Mater 54, 145–154 (2018). https://doi.org/10.1007/s11029-018-9727-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-018-9727-7

Keywords

Navigation