Skip to main content
Log in

Composite Films Based on Styrene-co-butyl-acrylate with Colemanite and Calcium Bentonite Mineral Fillers

  • Published:
Mechanics of Composite Materials Aims and scope

Composites are engineered materials made from two or more constituent materials, which remain separate and distinct on the macroscopic level within the finished structure and also with significantly different physical or chemical properties. In recent years, there has been a great interest in polymer/inorganic composites, which stems from their improved properties. Mineral fillers in composites are widely used in industrial applications such as adhesives and paints. They provide better mechanical properties and thermal resistance to the systems and also reduce manufacturing costs. In this study, a comparative evaluation of colemanite and calcium bentonite minerals used as a filler in an aqueous polymer emulsion (styrene-co-butyl acrylate copolymer) is performed. The effect of amount and type of mineral additives on the mechanical properties of composites is investigated. Meanwhile, a comparison between colemanite and calcium bentonite is made on the basis of their different dispersion characteristics in a polymeric matrix. The degree of interfacial interaction between the filler and polymeric matrix is also modeled using the B parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. U. S. Rai and R. K. Singh, “Synthesis and mechanical characterization of polymer-matrix composites containing calcium carbonate/white cement filler,” Mater. Lett., 58, 235-240 (2004).

    Article  Google Scholar 

  2. M. H. Al-Saleh and U. Sundararaj, “Review of the mechanical properties of carbon nanofiber/polymer composites,” Compos. Part A-Appl., 42, 2126-2142 (2011).

    Article  Google Scholar 

  3. A. P. Mouritz, S. Feih, E. Kandare, Z. Mathys, A. G. Gibson, P. E. Des Jardin, S. W. Case, and B. Y. Lattimer, “Review of fire structural modelling of polymer composites,” Compos. Part A, Appl., 40, 1800-1814 (2009).

    Article  Google Scholar 

  4. S. Pavlidou and C. D. Papaspyrides, “A review on polymer-layered silicate nanocomposites,” Prog. Polym. Sci., 33, 1119-1198 (2008).

    Article  Google Scholar 

  5. S. Sinha Ray and M. Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing,” Prog. Polym. Sci. 28, 1539-1641 (2003).

    Article  Google Scholar 

  6. J. D. Tucker, P. L. Lear, G. S. Atkinson, S. Lee, and S. J. Lee, “Use of polymeric compatibilizers in polypropylene/calcium carbonate composites,” Korean J. Chem. Eng., 17, 506-509 (2000).

    Article  Google Scholar 

  7. P. Jash and C. A. Wilkie, “Effects of surfactants on the thermal and fire properties of poly(methyl methacrylate)/clay nanocomposites,” Polym. Degrad. Stabil., 88, 401–406 (2005).

    Article  Google Scholar 

  8. S.-Y. Fu, X.-Q. Feng, B. Lauke, and Y.-W. Mai, “Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites,” Compos., Part B, Eng. 39, 933-961 (2008).

    Article  Google Scholar 

  9. Zhang, Q, Fu, Jiang, and L. X, “Preparation and properties of polypropylene/montmorillonite layered nanocomposites,” Polym. Int., 49, 1561-1564 (2000).

  10. R. D. Maksimov, S. Gaidukovs, M. Kalnins, J. Zicans, and E. Plume, “A nanocomposite based on a styrene-acrylate copolymer and native montmorillonite clay 1. Preparation, testing, and properties,” Mech. Compos. Mater., 42, 45-54 (2006).

    Article  Google Scholar 

  11. F. Santiago, A. E. Mucientes, M. Osorio, and C. Rivera, “Preparation of composites and nanocomposites based on bentonite and poly(sodium acrylate). Effect of amount of bentonite on the swelling behaviour,” Eur. Polym., J., 43, 1-9 (2007).

    Article  Google Scholar 

  12. D. García-López, “Polypropylene-clay nanocomposites: effect of compatibilizing agents on clay dispersion,” Eur. Polym. J., 39, 945-950 (2003).

    Article  Google Scholar 

  13. Y. Zhang, J. Zhu, E. A. Verploegen, E. P. Giannellis, and U. Wiesner, “Morphology–rheology correlations for polystyrene/layered silicate nanocomposites,” Abstr. Pap. Am. Chem. S., 224, U484-U484 (2002).

    Google Scholar 

  14. C. M. Koo, M. J. Kim, M. H. Choi, S. O. Kim, and I. J. Chung, “Mechanical and rheological properties of the maleated polypropylene-layered silicate nanocomposites with different morphology,” J. Appl. Polym. Sci., 88, 1526-1535 (2003).

    Article  Google Scholar 

  15. W. E. Worrall, Clays and Ceramic Raw Materials. London: Appl. Sci. Publ. Ltd; 1975.

    Google Scholar 

  16. Z. Demjén, B. Pukánszky, and J. Nagy, “Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites,” Compos. Part A. Appl. S. 29, 323-329 (1998).

    Article  Google Scholar 

  17. R. D. Maksimov, S. Gaidukovs, M. Kalnins, J. Zicans, and E. Plume, “A nanocomposite based on a styrene-acrylate copolymer and native montmorillonite clay 1. Preparation, testing, and properties,” Mech. Compos. Mater., 42, 45-54 (2006).

    Article  Google Scholar 

  18. Wu J, Yu, D. M Mai, and Y. W, “Fracture toughness and fracture mechanisms of PBT/PC/IM blends. Part IV. Impact toughness and failure mechanisms of PBT/PC blends without impact modifier,” J. Mater. Sci., 35, 307-315 (2000).

  19. X. Zheng, D. D. Jiang, and C. A. Wilkie, “Polystyrene nanocomposites based on an oligomerically modified clay containing maleic anhydride,” Polym. Degrad. Stabil., 91, 108-113 (2006).

    Article  Google Scholar 

  20. F. Boylu, K. Çinku, F. Esenli, and M. S. Çelik, “The separation efficiency of Na-bentonite by hydrocyclone and characterization of hydrocyclone products,” Int. J. Miner. Process, 94, 196-202 (2010).

    Article  Google Scholar 

  21. ASTM D638-08, Standart Test Method for Tensile Properties of plastics (2008).

  22. ASTM D3676-07, Standart Specification for Rubber Cellular Cushion Used for Carpet or Rug Underlay (2007).

  23. S. Sun, C. Li, L. Zhang, H. Du, and J. Burnell-Gray, “Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments,” Polym. Int., 55, 158-164 (2006).

    Article  Google Scholar 

  24. S. Ramakrishna, T. C. Lim, R. Inai, and K. Fujihara, “Modified Halpin–Tsai equation for clay-reinforced polymer nanofiber,” Mech. Adv. Mater. Struc., 13, 77-81 (2006).

    Article  Google Scholar 

  25. M. J. Clifford and T. Wan, “Fibre reinforced nanocomposites: Mechanical properties of PA6/clay and glass fibre/PA6/clay nanocomposites,” Polymer, 51, 535-539 (2010).

    Article  Google Scholar 

  26. B. Turcsányi, B. Pukánszky, and F. Tüdõs, “Composition dependence of tensile yield stress in filled polymers,” J. Mater. Sci. Lett., 7, 160-162 (1988).

    Article  Google Scholar 

  27. L. Jiang, Y. C. Lam, K. C. Tam, T. H. Chua, G. W. Sim, and L. S. Ang, “Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate,” Polymer, 46, 243-252 (2005).

    Article  Google Scholar 

  28. G.-S. Gai, Y.-F. Yang, S.-M. Fan, and Z.-F. Cai, “Preparation and properties of composite mineral powders,” Powder Technol., 153, 153-158 (2005).

    Article  Google Scholar 

  29. E. M. Araújo, R. Barbosa, A. W. B. Rodrigues, T. J. A. Melo, and E. N. Ito, “Processing and characterization of polyethylene/Brazilian clay nanocomposites,” Mater. Sci. Eng. A-Struct., 445-446, 141-147 (2007).

    Article  Google Scholar 

  30. L. B. de Paiva, A. R. Morales, and F. R. Valenzuela Díaz, “Organoclays: Properties, preparation and applications,” Appl. Clay. Sci., 42, 8-24 (2008).

    Article  Google Scholar 

  31. Debowska, M., Dolega, J., and Rudzinska-Girulskaa, “Polyamide 6/layered silicate nanocomposites,” Acta. Phys. Pol., A 113, 1321-1329 (2008).

    Google Scholar 

  32. B. W. Jo, S. K. Park, and D. K. Kim, “Mechanical properties of nano-MMT reinforced polymer composite and polymer concrete,” Constr. Build. Mater., 22, 14-20 (2008).

    Article  Google Scholar 

  33. J. Luo, “Characterization and modeling of mechanical behavior of polymer/clay nanocomposites,” Compos. Sci. Technol., 63, 1607-1616 (2003).

    Article  Google Scholar 

  34. M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mat. Scı. Eng., R 28, 1-63 (2000).

    Article  Google Scholar 

  35. J. Z. Liang and A. Li, “Inorganic particle size and content effects on tensile strength of polymer composites,” J. Reınf. Plast. Comp., 29, 2744-2752 (2010).

    Article  Google Scholar 

  36. D. Justino Carastan, N. R. Demarquette, A. Vermogen, and K. Masenelli-Varlot, “Linear viscoelasticity of styrenicblock copolymer-clay nanocomposites,” Rheol. Acta, 47, 521-536 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Guven.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 50, No. 3, pp. 477-486, May-June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guven, O., Karakas, F., Kaya, M.A. et al. Composite Films Based on Styrene-co-butyl-acrylate with Colemanite and Calcium Bentonite Mineral Fillers. Mech Compos Mater 50, 335–342 (2014). https://doi.org/10.1007/s11029-014-9419-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-014-9419-x

Keywords

Navigation