Skip to main content
Log in

Reinforced Flax Mat/Modified Polylactide (PLA) Composites: Impact, Thermal, and Mechanical Properties

  • Published:
Mechanics of Composite Materials Aims and scope

Polylactide (PLA)/flax mat and modified PLA/flax mat composites were produced by the hot pressing technique. The dispersion of the flax mat in the composites was studied by the scanning electron microscopy (SEM). The PLA composites were subjected to an instrumented falling-weight impact test. The mechanical and thermal properties of the composites were determined by using tensile tests, a thermogravimetric analysis (TGA), and a dynamic-mechanical thermal analysis (DMTA). It was found that the flat mat increased the impact resistance of PLA, but the tensile strength of the modified PLA/flax mat composite decreased slightly compared with that of PLA. Data on the elongation at break pointed to a higher ductility of the modified PLA and its composites. Moreover, the addition of a thermal modifier enhanced the thermal resistance below the processing temperature of PLA and had a marginal effect on its glass-transition temperature. The master curves of the storage modulus were constructed by employing the time-temperature superposition (TTS) principle. The principle of a linear viscoelastic material was fairly applicable to transition from the modulus to the creep compliance for all the systems studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Vainionpaa, P. Rokkanen, and P. Torrmala, “Surgical applications of biodegradable polymers in human tissues,” Prog. Polym. Sci., 14, 679-716 (1989).

    Article  Google Scholar 

  2. M. J. Manninen, U. Päivärinta, H. Pätiälä, P. Rokkanen, R.Taurio, M. Tamminmäki, and P. Törmälä, “Shear strength of cancellous bone after osteotomy fixed with absorbable self-reinforced polyglycolic acid and poly-L-lactic acid rods,” J. Mater. Sci., 3, 245-251 (1992).

    Google Scholar 

  3. R. Auras, B. Harte, and S. Selke, “An overview of polylactides as packaging materials,” Macromol. Biosci., 4, 835-864 (2004).

    Article  Google Scholar 

  4. R. Dangtungee, K. Petcharoen, K. Pinijsattawong, and S. Siengchin, “Investigation of the rheological properties and die swell of polylactic acid/nanoclay composites in a capillary rheometer,” Mech. Compos. Mater., 47, No. 6, 663-670 (2012).

    Article  Google Scholar 

  5. E. Fortunati, I. Armentano, A. Iannoni, and J.M. Kenny, “Development and thermal behavior of ternary PLA matrix composites,” Polymer Degradation and Stability, 95, 2200-2206 (2010).

    Article  Google Scholar 

  6. R. Kumar, M. K. Yakabu, and R. D. Anandjiwala, “Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives,” Composites: Part A, 41, 1620-1627 (2010).

    Article  Google Scholar 

  7. N. Graupner, A. S. Herrmann, and J. Müssig, “Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas,” Composites: Part A, 40, 810-821 (2009).

    Article  Google Scholar 

  8. S. Ochi, “Mechanical properties of kenaf fibers and kenaf/PLA composites,” Mechanics of Materials, 40, 446-452 (2008).

    Article  Google Scholar 

  9. A. K. Bledzki, A. Jaszkiewicz, and D. Scherzer, “Mechanical properties of PLA composites with man-made cellulose and abaca fibres,” Composites: Part A, 40, 404-412 (2009).

    Article  Google Scholar 

  10. F. Roussièr, C. Baley, G. Godard, and D. Burr, “Compressive and tensile behaviours of PLLA matrix composites reinforced with randomly dispersed flax fibres,” Appl. Compos. Mater., 19, 171-188 (2012).

    Article  Google Scholar 

  11. S. Siengchin, T. Pohl, L. Medina, and P. Mitschang, “Structure and properties of flax/polylactide/alumina nanocomposites,” J. Reinf. Plast. Compos., 32, 23–33.

  12. B. Bax and J. Müssig, “Impact and tensile properties of PLA/Cordenka and PLA/flax composites,” Compos. Sci. Technol., 68, 1601-1607 (2008).

    Article  Google Scholar 

  13. K. Das, D. Ray, I. Banerjee, N. R. Bandyopadhyay, S. Sengupt, A.K. Mohanty, and M. Misra, “Crystalline morphology of PLA/clay nanocomposite films and its correlation with other properties,” J. Appl. Polym. Sci., 118, 143-151 (2010).

    Article  Google Scholar 

  14. D. R. Mulinari, H. J. C. Voorwald, M. O. H. Cioffi, M. L. C. P. Silva, T. G. Cruz, and C. Saron, “Sugarcane bagasse cellulose/HDPE composites obtained by extrusion,” Compos. Sci. Technol., 69, 214-219 (2009).

    Article  Google Scholar 

  15. A. Gomes, T. Matsuo, K. Goda, and J. Ohgi, Development and effect of alkali treatment on tensile properties of curaua fiber green composites,” Composites A, 38, 1811-1820 (2007).

    Article  Google Scholar 

  16. A. Arbelaiz, G. Cantero, B. Fernández, I. Mondragon, P. Ganán, and J. M. Kenny, “Flax fiber surface modifications: Effects on fiber physico-mechanical and flax/polypropylene interface properties,” Polymer Composites, 26, 324-332 (2005).

    Article  Google Scholar 

  17. M. Kowalczyk, E. Piorkowska, P. Kulpinski, and M. Pracella, “Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard-size fibers,” Composites: Part A, 42, 1509-1514 (2011).

    Article  Google Scholar 

  18. S. Mohanty, S.K. Verma, and S. K. Nayak, “Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites,” Compos. Sci. Technol., 66, 538-547 (2006).

    Article  Google Scholar 

  19. M. T. Shaw and W. J. MacKnight, Introduction to Polymer Viscoelasticity, John Wiley and Sons, NY (2005).

    Book  Google Scholar 

  20. S. Siengchin, Ph.D. Dissertation, IVW Schriftenreihe Band 82, A.K. Schlarb (Hrsg.), Kaiserslautern (2008).

  21. L. Suryanegara and A. N. Nakagaito, and H. Yano, “The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites,” Compos. Sci .Technol., 69, 1187-1192 (2009).

    Article  Google Scholar 

  22. S. Siengchin, J. Karger-Kocsis, and R. Thomann, “Alumina-filled polystyrene micro- and nanocomposites prepared by melt mixing with and without latex precompounding: Structure and properties,” J. Appl. Polym. Sci., 105, 2963-2972 (2007).

    Article  Google Scholar 

  23. J. D. Ferry, Viscoelastic Properties of Polymers, Wiley and Sons, NY (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Siengchin.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 50, No. 2, pp. 361-372 , March-April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siengchin, S. Reinforced Flax Mat/Modified Polylactide (PLA) Composites: Impact, Thermal, and Mechanical Properties. Mech Compos Mater 50, 257–266 (2014). https://doi.org/10.1007/s11029-014-9412-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-014-9412-4

Keywords

Navigation