Skip to main content
Log in

The Effect of Void Shape and Volume Fraction of Fibers on the Stress Distribution in a Laminated Composite Plate with Triangular Fibers

  • Published:
Mechanics of Composite Materials Aims and scope

The effect of void shape and volume fraction of fibers on the distribution of stresses in a laminated composite plate subjected to a tensile load applied in the fiber direction is investigated. The cross section of all fibers is triangular. The void can simulate an internal crack or a cylindrical hole. The shear-lag model is used to derive the field equations. By using proper boundary and bonding conditions, complete load and displacement fields in the laminate are determined. The effects of physical parameters of fibers and of void shape and its location on stress concentrations and peak shear stresses in the laminate are studied. The analytical results for stress concentration factors are compared with those given by the finite-element method, and a close agreement between them is found to exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. L. Cox, “The elasticity and strength of paper and other fibrous materials,” British J. of Appl. Phys., 3, No. 3, 72-79 (1952).

    Article  Google Scholar 

  2. J. M. Hedgepeth, “Stress concentrations in filamentary structures,” NASA-TND 882, (1961).

  3. J. M. Hedgepeth P. Van Dyke, “Local stress concentrations in imperfect filamentary composite materials,” J. of Compos. Mater., 1, 294-309 (1967).

    Google Scholar 

  4. I. J. Beyerlein, S. L. Phoenix, and A. M. Sastry, “Comparison of shear-lag theory and continuum fracture mechanics for modeling fiber and matrix stresses in an elastic cracked composite lamina,” Int. J. Solids Struct., 33, 2543-2574, (1996).

    Article  Google Scholar 

  5. M. R. Nedele and M. R. Wisnom, “Stress concentration factors around a broken fibre in a unidirectional carbon fibrereinforced epoxy,” Composites, 25, 549-557 (1994).

    Article  Google Scholar 

  6. M. R. Nedele and M. R. Wisnom, “Three-dimensional finite element analysis of the stress concentration at a single fibre break,” Compos. Sci. Technol., 51, 517-524, (1994).

    Article  Google Scholar 

  7. C. M. Landis and R. M. McMeeking, “Stress concentrations in composites with interface sliding, matrix stiffness and uneven fiber spacing using shear lag theory,” Int. J. Solids Struct., 36, 4333-4361 (1999).

    Article  Google Scholar 

  8. J. N. Rossettos and M. Shishehsaz, “Stress concentration in fiber composite sheets including matrix extension,” J. Appl. Mech., 54 (1987).

  9. H. Fukuda and T. W. Chou, “Stress concentration in a hybrid composite sheet,” J. Appl. Mech., 50, 845-848 (1983).

    Article  Google Scholar 

  10. M. Shishehsaz, “Hybridization effect on stress distribution in short fiber composite monolayer of finite width,” CSME Mechanical Engineering Forum, Toronto, Canada, (1990).

    Google Scholar 

  11. C. M. Landis, M. A. McGlockton, and R. M. McMeeking, “An improved shear-lag model for broken fibers in composite materials,” J. Compos. Mater. 33, 667-680 (1999).

    Article  Google Scholar 

  12. C. M. Landis, I. J. Beyerlein, and R. M. McMeeking, “Micromechanical simulation of the failure of fiber-reinforced composites,” J. Mech. Phys. Solids, 48, 621-648, (2000).

    Article  Google Scholar 

  13. T. Okabe and N. Takeda, “Elastoplastic shear-lag analysis of single-fiber composites and strength prediction of unidirectional multifiber composites,” Composites: Part A: Appl. Sci. and Manufacturing, 33, No. 10, 1327-1335 (2002).

    Article  Google Scholar 

  14. T. Okabe, N. Takeda, Y. Kamoshida, M. Shimizu, and W. A. Curtin, “A 3D shear-lag model considering microdamage and statistical strength prediction of unidirectional fiber-reinforced composites,” Compos. Sci. Technol., 61, No. 12, 1773-1787 (2001).

    Article  Google Scholar 

  15. Y. Okabe, N. Tanaka, and N. Takeda, “Effect of fiber coating on crack detection in carbon-fiber-reinforced plastic composites using fiber Bragg grating sensors,” Smart Materials and Structures, 11, No. 6, 892-898 (2002).

    Article  Google Scholar 

  16. S. Ochiai, K. Schulte, and P. W. M. Peters, “Strain concentration factors for fibers and matrix in unidirectional composites,” Compos. Sci. Technol., 41, 237-256 (1991)

    Article  Google Scholar 

  17. K. Goda, “A strength reliability model by the Markov process of unidirectional composites with fibers placed in hexagonal arrays,” Int. J. Solids Struct., 40, 6813-6837 (2003).

    Article  Google Scholar 

  18. T. j. Kim and C. K. Park, “Flextural and tensile strength developments of various-shape carbon-fiber-reinforced light weight cementitious composites,” Concrete Research, 7, p.955 (1998).

    Article  Google Scholar 

  19. I. Bond, M. Hucker, P. Weaver, St. Bleay, and S. Haq, “Mechanical behavior of circular and triangular glass fibers and their composites,” J. Compos. Sci. Technol., 62 (2002).

  20. S. J. Park, M. K. Seo, and H. B. Shim, “Effect of fiber shapes on the physical characteristics of non-circular carbon- -fiber-reinforced composites,” J. Mater. Sci. and Engineering, A352, p. 34 (2003).

    Article  Google Scholar 

  21. J. Harris, I. P. Bond, P. M. Weaver, M. R. Wisnom, and A. Rezai, “Measuring strain energy release rate (G Ic) in novel fibre shape composites,” J. Compos. Sci. Technol., 66, 1239-1247 (2006).

    Article  Google Scholar 

  22. S. Sirivedin, D. N. Fenner, R. B. Nath, and C. Galiotis, “Effects of inter-fiber spacing and matrix cracks on stress amplification factors in carbon-fiber/epoxy matrix composites. Part I. Planar array of fibers,” J. Composites: Part A: Appl. Sci. and Manufacturing, 34 (2003).

  23. P. W. J. van den Heuvel, T. Peijs and R. J. Young “Failure phenomena in two-dimensional multi-fiber microcomposites. Part 4. A Raman spectroscopic study on the influence of the matrix yield stress on stress concentrations,” J. of Composites: Part A, 31, 165-171 (2000).

    Article  Google Scholar 

  24. D. T. Grubb, Li Zong-Fu, and S. Leigh Phoenix, ‘Measurement of stress concentration in a fiber adjacent to a fiber break in a model composite,” Compos. Sci. Technol., 53, 237-249 (1995).

    Article  Google Scholar 

  25. X.-F. Zhou and H. D. Wagner, “Stress concentrations caused by fiber failure in two-dimensional composites,” Compos. Sci. Technol., 59, 1063-1071 (1999).

    Article  Google Scholar 

  26. H. D. Wagner and A. Eitan, “Stress concentration factors in two-dimensional composites: effects of material and geometrical parameters,” Compos. Sci. Technol., 46, 353-362 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Robati.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 50, No. 2, pp. 223-236, March-April, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robati, H., Haghparast, A., Shishesaz, M. et al. The Effect of Void Shape and Volume Fraction of Fibers on the Stress Distribution in a Laminated Composite Plate with Triangular Fibers. Mech Compos Mater 50, 155–164 (2014). https://doi.org/10.1007/s11029-014-9403-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-014-9403-5

Keywords

Navigation