Skip to main content
Log in

Buckling delamination of elastic and viscoelastic composite plates with cracks. Survey I: solution method and problems related to the plane strain state

  • Published:
Mechanics of Composite Materials Aims and scope

Results related to the buckling delamination of elastic and viscoelastic composite plates are reviewed and analyzed. They have been obtained during the last fifteen years by the author and his students. The plates contain cracks whose faces have initial infinitesimal imperfections. The evolution of the imperfections under compression of the plates is studied, and the values of critical parameters are determined from a criterion of initial imperfection. The study is performed with the use of 3D geometrically nonlinear field equations. In the present paper, the historical background of the problems is outlined considered, general remarks about the field equations and solution method are made, and problems related to the plane strain state are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. M. Kachanov, “Fracture of composite materials by means of delaminations,” Mech. Polimer, 5, 918–922 (1976).

    Google Scholar 

  2. G. A. Kardomateas, A. A. Pelgri, and B. Malik, “Growth of internal delaminations under cyclic compression in composite plates,” J. Mech. Phys. Solids, 43, No. 6, 847–868 (1995).

    Article  CAS  Google Scholar 

  3. V. V. Bolotin, “Delaminations in composite structures: its origin, buckling, growth and stability,” Composites, Pt. B, 27B, 129–145 (1996).

    Article  CAS  Google Scholar 

  4. H. Chai, C. D. Babcock, and W. G. Knauss, “One-dimensional modeling of failure in laminated plates by delamination buckling,” Int. J. Solids Struct., 17, 1069–1083 (1981).

    Article  Google Scholar 

  5. J. T. Wang, S. H. Cheng, and C. C. Lin, “Local buckling of delaminated beams and plates using continuous analysis,” J. Compos. Mater., 29, 1374–1402 (1995).

    Article  Google Scholar 

  6. S. F. Hwang and C. P. Mao, “The delamination buckling of a single-fibre system and interply hybrid composites,” Compos. Struct., 46, 279–287 (1999).

    Article  Google Scholar 

  7. G. J. Short, F. J. Guild, and M. J. Pavier, “The effect of delamination geometry on the compressive failure of composite laminates,” Compos. Sci. Technol., 61, 2075–2086 (2001).

    Article  CAS  Google Scholar 

  8. Y. Arman, M. Zor, and S. Aksoy, “Determination of the critical delamination diameter of laminated composite plates under buckling loads,” Compos. Sci. and Technol., 66, 2945–2953 (2006).

    Article  Google Scholar 

  9. A. G. Evans and J. W. Hutchinson, “The thermomechanical integrity of thin films and multilayers,” Acta Metal Mater., 43, 2507–2530 (1995).

    Article  CAS  Google Scholar 

  10. F. Gioia and M. Ortiz, “Delamination of compressed thin films,” Adv. Appl. Mech., 33, 120–192 (1997).

    Google Scholar 

  11. J. W. Hutchinson and Z. Suo, “Mixed-mode cracking in layered materials,” Adv. Appl. Mech., 29, 63–191 (1992).

    Article  Google Scholar 

  12. J. W. Hutchinson, M. D. Thouless, and E. G. Liniger, “Growth and configurational stability of circular, buckling-driven film delaminations,” Acta Metall Mater., 40, 295–308 (1992).

    Article  CAS  Google Scholar 

  13. M. D. Thouless, H. M. Jensen, and E. G. Liniger, “Delamination from edge flaws,” Proc. Royal Soc. London A447, 271–279 (1994).

    Google Scholar 

  14. M. W. Moon, K. R. Lee, K. H. Oh, and J. W. Hutchinson, “Buckle delamination on patterned substrates”, Acta Materialia, 52, 3151–3159 (2004).

    Article  CAS  Google Scholar 

  15. J. W. Hutchinson, M. Y. He, and A. G. Evans, “The influence of imperfections on the nucleation and propagation of buckling-driven delaminations,” J. Mech. Phys. Solids, 48, 709–734 (2000).

    Article  CAS  Google Scholar 

  16. A. N. Guz and V. M. Nazarenko, “Theory of near-surface delamination of composite materials under compression along a macrocrack,” Mech. Compos. Mater., 21, No. 5, 826–833 (1985).

    Google Scholar 

  17. A. N. Guz and V. M. Nazarenko, “Symmetric failure of a half-space with a penny-shaped crack in compression,” Theor. Appl. Fract. Mech., 3, 233–245(1985).

    Article  Google Scholar 

  18. A. N. Guz, “Description and study of some non-classical problems of fracture mechanics and related mechanisms,” Int. Appl. Mech., 36, No. 12, 1537–1564 (2000).

    Article  Google Scholar 

  19. A. N. Guz, M. S. Dysel, and V. M. Nazarenko, “Fracture and stability of materials and structural members with cracks: approach and results,” Int. Appl. Mech., 40, No. 12, 1323–1359 (2004).

    Article  Google Scholar 

  20. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Deformable Bodies, Springer-Verlag Berlin, Heldelberg (1999).

    Google Scholar 

  21. A. N. Guz, Fundamentals of the Compression Fracture Mechanics of Composites: Fracture in the Structure of Materials. Vol. 1, Litera, Kiev (2008) (in Russian).

    Google Scholar 

  22. A. N. Guz, Fundamentals of the Compression Fracture Mechanics of Composites: Related Fracture Mechanics., 2, Litera, Kiev (2008) (in Russian).

  23. V. L. Bogdanov, A. N. Guz, and V. M. Nazarenko, “Fracture of a body with a periodic set of coaxial cracks under a force directed along them: an axisymmetric problem,” Int. Appl. Mech., 45, No. 2, 111–124 (2009).

    Article  Google Scholar 

  24. N. J. Hoff, “Buckling and stability,” J. Roy. Aeronaut. Soc., 58, No. 1 (1954)

    Google Scholar 

  25. S. D. Akbarov, “On the three dimensional stability loss problems of elements of constructions fabricated from viscoelastic composite materials,” Mech. Comp. Mater., 34, No. 6, 537–544 (1998).

    Article  Google Scholar 

  26. S. D. Akbarov, “Three-dimensional instability problems for viscoelastic composite materials and structural members”, Int Appl Mech 43, No. 10, 1069–1089 (2007).

    Article  Google Scholar 

  27. S. D. Akbarov, T. Sisman, and N. Yahnioglu, “On the fracture of unidirectional composites in compression,” Int. J. Eng. Sci., 35, No.12/13, 1115–1136 (1997).

    Article  Google Scholar 

  28. S. D. Akbarov and A. N. Guz, Mechanics of Curved Composites. Kluwer Academic Publishers, Dordrecht/Boston/London (2000).

    Book  Google Scholar 

  29. S. D. Akbarov and N. Yahnioglu, “The method for investigation of the general theory of stability problems of structural elements fabricated from the viscoelastic composite materials,” Compos. Part B-Eng, 32, No. 5, 475–482 (2001).

    Article  Google Scholar 

  30. S. D. Akbarov and O. G. Rzayev, “On the buckling of the elastic and viscoelastic composite circular thick plate with a penny-shaped crack,” Eur. J. Mech. A-Solid, 21, No. 2, 269–279 (2002).

    Article  Google Scholar 

  31. S. D. Akbarov and O. G. Rzayev, “Delamination of unidirectional viscoelastic composite materials,” Mech. Compos. Mater., 38, No. 1, 17–24 (2002).

    Article  Google Scholar 

  32. S. D. Akbarov and O. G. Rzayev, “On the delamination of a viscoelastic composite circular plate,” Int. Appl. Mech., 39, No. 3, 368–374 (2003).

    Article  Google Scholar 

  33. O. G. Rzayev and S. D. Akbarov, “Local buckling of elastic and viscoelastic coatings around a penny-shaped interface crack,” Int. J. Eng. Sci., 40, 1435–1451(2002).

    Article  Google Scholar 

  34. O. G. Rzayev, “Local buckling around an interfacial crack in a viscoelastic sandwich plate,” Mech. Compos. Mater., 38, No.2, 233–242 (2002).

    Article  Google Scholar 

  35. O. G. Rzayev, “Buckling around the two collinear macrocracks in a clamped composite plate-strip,” Trans. IMM NASA, Ser. Phys. Tech. Math. Sci., XXI, No. 4, 173–178 (2001).

    Google Scholar 

  36. O. G. Rzayev, Delamination of elastic and viscoelastic plates containing cracks, PhD Thesis, Baku (2003).

  37. S. D. Akbarov, N. Yahnioglu, and O. G. Rzayev, “Influence of singular-type finite elements on the critical force in studying the buckling of a circular plate with a crack,” Int. Appl. Mech., 43, No.9, 120–129 (2007).

    Article  Google Scholar 

  38. S. D. Akbarov and N. Yahnioglu, “Delamination buckling of a rectangular orthotropic composite plate containing a band crack,” Mech. Compos. Mater., 46, No. 5, 493–504 (2010).

    Article  Google Scholar 

  39. S. D. Akbarov, N. Yahnioglu, and E. E. Karatas, “Buckling delamination of a rectangular plate containing a rectangular crack and made from elastic and viscoelastic composite materials,” Int. J. Solids Struct., 47, 3426–3434 (2010).

    Article  CAS  Google Scholar 

  40. S. D. Akbarov, N. Yahnioglu, and A. Tekin, “3D FEM analyses of the buckling delamination of a rectangular plate containing interface rectangular cracks and made from elastic and viscoelastic materials,” CMES: Compos. Mod. Eng. Sci., 64, No.2, 147–185 (2010).

    Google Scholar 

  41. S. D. Akbarov, N. Yahnioglu, and A. Tekin, “Local buckling delamination of a rectangular sandwich plate containing interface embedded rectangular cracks and made from elastic and viscoelastic materials”, CMC: Computers, Material & Continua, 29, No. 1, 41–47 (2012).

    Google Scholar 

  42. R. A. Schapery, “Approximate methods of transform inversion for viscoelastic stress analyses,” Proc 4th US Nat. Cong. Appl. Mech. ASME, 1075–1086 (1962).

  43. R. A. Schapery, “A viscoelastic behaviour of composite materials”, in Composite Materials, Vol. 1–7, Eds. By Broutman L.J. and Krock R.H., Mir, Moscow, translated from English), Vol. 2.: Mechanics of Composite Materials, 102–195(in Ruıssian, translated from English) (1978).

  44. S. E. Benzley, “Representation of singularities with isoparametric finite elements,” Int. J. Numer. Meth. Eng., 8, 537–545 (1974).

    Article  Google Scholar 

  45. O. C. Zienkiewicz and R. L. Taylor, Basic Formulation and Linear Problems. The Finite Element Method., 1, 4th ed., McGraw-Hill, New York (1989).

  46. Yu. N. Rabotnov, Elements of Hereditary Mechanics of Solid Bodies. Nauka, Moskow (1977) (in Russian).

    Google Scholar 

  47. R. M. Chiristensen, Mechanics of Composite Materials. New York: Wiley (1979).

    Google Scholar 

  48. E. Yu. Gladun, “Dependence of the critical load on the geometric characteristics of a hinged plate with a crack,” Int. Appl. Mech., 39, No. 6, 1225–1234 (2000).

    Article  Google Scholar 

  49. A. Turan and S. D. Akbarov, “On the loss of stability of a strip with two parallel macrocracks under finite precritical deformation,” Int. Appl. Mech. 46, No 3, 359–365 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Akbarov.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 48, No. 6, pp. 981–996, November-December, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbarov, S.D. Buckling delamination of elastic and viscoelastic composite plates with cracks. Survey I: solution method and problems related to the plane strain state. Mech Compos Mater 48, 681–692 (2013). https://doi.org/10.1007/s11029-013-9312-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-013-9312-z

Keywords

Navigation